26s proteasome
Recently Published Documents


TOTAL DOCUMENTS

1232
(FIVE YEARS 298)

H-INDEX

106
(FIVE YEARS 10)

2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Yu Wang ◽  
Nan Yang ◽  
Yunna Zheng ◽  
Jiaolin Yue ◽  
Vijai Bhadauria ◽  
...  

AbstractUbiquitination is a vital protein post-translational modification (PTM) prevalent in eukaryotes. This modification regulates multiple cellular processes through protein degradation mediated by the 26S proteasome or affecting protein–protein interaction and protein localization. Magnaporthe oryzae causes rice blast disease, which is one of the most devastating crop diseases worldwide. In M. oryzae, ubiquitination plays important roles in growth, pathogenicity, stress response and effector-mediated plant-pathogen interaction. In this review, we summarize the roles of ubiquitination components in the above biological processes of M. oryzae, including single- or multi-subunit E3s, E2s, components of 26S proteasome and also deubiquitinating enzymes. The essential function of ubiquitination in plant-fungus interaction is also discussed. Moreover, this review presents several issues related to the ubiquitination system in M. oryzae, which need to be further explored in future researches.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 234
Author(s):  
Veronika Kinterová ◽  
Jiří Kaňka ◽  
Alexandra Bartková ◽  
Tereza Toralová

SCF-dependent proteolysis was first discovered via genetic screening of budding yeast almost 25 years ago. In recent years, more and more functions of SCF (Skp1-Cullin 1-F-box) ligases have been described, and we can expect the number of studies on this topic to increase. SCF ligases, which are E3 ubiquitin multi-protein enzymes, catalyse protein ubiquitination and thus allow protein degradation mediated by the 26S proteasome. They play a crucial role in the degradation of cell cycle regulators, regulation of the DNA repair and centrosome cycle and play an important role in several diseases. SCF ligases seem to be needed during all phases of development, from oocyte formation through fertilization, activation of the embryonic genome to embryo implantation. In this review, we summarize known data on SCF ligase-mediated degradation during oogenesis and embryogenesis. In particular, SCFβTrCP and SCFSEL-10/FBXW7 are among the most important and best researched ligases during early development. SCFβTrCP is crucial for the oogenesis of Xenopus and mouse and also in Xenopus and Drosophila embryogenesis. SCFSEL-10/FBXW7 participates in the degradation of several RNA-binding proteins and thereby affects the regulation of gene expression during the meiosis of C. elegans. Nevertheless, a large number of SCF ligases that are primarily involved in embryogenesis remain to be elucidated.


2022 ◽  
Vol 3 (1) ◽  
pp. 176-184
Author(s):  
Shuai Gao ◽  
◽  
Fangxia Zou ◽  
Lixia Zheng ◽  
Yunjie Wang ◽  
...  

Pancreatic cancer is a rare but highly malignant cancer with few effective treatments available. Targeting cancers bearing specific genetic mutations offers a new approach for cancer therapy. PROTAC (proteolysis-targeting chimeras) is an emerging technique to design targeted therapy and increasing evidence supports its utility. This study examined the in vitro pharmacodynamics and mechanism of PROTAC K-Ras Degrader-1 (PKD-1), a PROTAC molecule, in inhibiting the proliferation of pancreatic cancer cells. We used a pancreatic cancer cell line, MIA PaCa-2 cells, to examined the binding and degradation-promoting capabilities of PKD-1 on KRAS G12C protein and further evaluated the effects of PKD-1 on cell viability, cell cycle and apoptosis. PKD-1 was able to bind to KRAS G12C protein, promoted its degradation for up to 72 h, reduced cell viability, increased cell cycle arrest and promoted cell apoptosis. Mechanistic study found that the efficacy of PKD-1 was at least partially mediated by promoting 26S proteasome degradation process. Combined, these results extended previous findings and support the potential utility of PROTAC molecules such as PKD-1 as a new treatment strategy against pancreatic cancer.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Jianhao Liu ◽  
Ruogang Zhao ◽  
Xiaowen Jiang ◽  
Zhaohuan Li ◽  
Bo Zhang

Bortezomib (BTZ) is the first proteasome inhibitor approved by the Food and Drug Administration. It can bind to the amino acid residues of the 26S proteasome, thereby causing the death of tumor cells. BTZ plays an irreplaceable role in the treatment of mantle cell lymphoma and multiple myeloma. Moreover, its use in the treatment of other hematological cancers and solid tumors has been investigated in numerous clinical trials and preclinical studies. Nevertheless, the applications of BTZ are limited due to its insufficient specificity, poor permeability, and low bioavailability. Therefore, in recent years, different BTZ-based drug delivery systems have been evaluated. In this review, we firstly discussed the functions of proteasome inhibitors and their mechanisms of action. Secondly, the properties of BTZ, as well as recent advances in both clinical and preclinical research, were reviewed. Finally, progress in research regarding BTZ-based nanoformulations was summarized.


2021 ◽  
Author(s):  
Siffat Ullah Khan ◽  
Yanxiao Zheng ◽  
Zaid Chachar ◽  
Xuhuan Zhang ◽  
Guyi Zhou ◽  
...  

Abstract Drought is one of the most critical environmental factors constraining corn production especially when it occurs during flowering, resulting in serious yield losses. In this study, anthesis to silk interval (ASI), plant height (PH), and ear biomass at the silking date (EBM) of 279 inbred lines were evaluated under water-stress (WS) and well-water (WW) field conditions for three consecutive years. Averagely, ASI was extended by 25.96%, ear biomass was decreased by 17.54%, and the PH was reduced by 12.47% under drought stress conditions. Genome wide association studies (GWAS) were carried out using phenotypic values under WS, WW and drought-tolerance index (WS-WW or WS/WW) applying mixed linear model controlling both population structure and relative kinship. Totally, 71, 159, and 21 SNPs were significantly (P < 10-5) associated with ASI, ear biomass, and PH, respectively. Candidate genes encoding ARABIDILLO 1 protein, glycoprotein, Tic22-like and Zinc finger family protein for ASI, and 26S proteasome non-ATPase regulatory subunit-9 for EBM, were identified under both WW and WS conditions. Pyridoxal phosphate transferase was associated with EBM under drought stress treatment in consecutive two years. Furthermore, most candidate genes were evidenced to be drought responsive in the association panel. Meanwhile, the favourable/drought tolerance haplotypes were identified based on haplotype analysis. These findings provide insights into the genetic basis of drought tolerance at the flowering stage especially for the female inflorescence development and will facilitate high drought tolerant maize breeding.


2021 ◽  
Vol 23 (1) ◽  
pp. 84
Author(s):  
Rubi Campos Gudiño ◽  
Ally C. Farrell ◽  
Nicole M. Neudorf ◽  
Kirk J. McManus

The SKP1, CUL1, F-box protein (SCF) complex represents a family of 69 E3 ubiquitin ligases that poly-ubiquitinate protein substrates marking them for proteolytic degradation via the 26S proteasome. Established SCF complex targets include transcription factors, oncoproteins and tumor suppressors that modulate cell cycle activity and mitotic fidelity. Accordingly, genetic and epigenetic alterations involving SCF complex member genes are expected to adversely impact target regulation and contribute to disease etiology. To gain novel insight into cancer pathogenesis, we determined the prevalence of genetic and epigenetic alterations in six prototypic SCF complex member genes (SKP1, CUL1, RBX1, SKP2, FBXW7 and FBXO5) from patient datasets extracted from The Cancer Genome Atlas (TCGA). Collectively, ~45% of observed SCF complex member mutations are predicted to impact complex structure and/or function in 10 solid tumor types. In addition, the distribution of encoded alterations suggest SCF complex members may exhibit either tumor suppressor or oncogenic mutational profiles in a cancer type dependent manner. Further bioinformatic analyses reveal the potential functional implications of encoded alterations arising from missense mutations by examining predicted deleterious mutations with available crystal structures. The SCF complex also exhibits frequent copy number alterations in a variety of cancer types that generally correspond with mRNA expression levels. Finally, we note that SCF complex member genes are differentially methylated across cancer types, which may effectively phenocopy gene copy number alterations. Collectively, these data show that SCF complex member genes are frequently altered at the genetic and epigenetic levels in many cancer types, which will adversely impact the normal targeting and timely destruction of protein substrates, which may contribute to the development and progression of an extensive array of cancer types.


2021 ◽  
Author(s):  
Pengbai Li ◽  
Liuming Guo ◽  
Xinyuan Lang ◽  
Mingjun Li ◽  
Gentu Wu ◽  
...  

Phytohormone gibberellin (GA) is an important plant signaling molecule that regulates plant growth and defense against abiotic and biotic stresses. To date, the molecular mechanism of the plant responses to viral infection mediated by GA is still undetermined. DELLA is a repressor of GA signaling and is recognized by the F-box protein, a component of the SCF SLY1/GID2 complex. The recognized DELLA is degraded by the ubiquitin-26S proteasome, leading to the activation of the GA signaling. Here, we report that ageratum leaf curl Sichuan virus (ALCScV)-infected N. benthamiana plants showed dwarfing symptom and abnormal flower development. The infection of ALCScV alters the expressions of GA pathway-related genes and decreases the content of endogenous GA significantly in N. benthamiana. Further, ALCScV-encoded C4 protein interacts with the DELLA protein NbGAI, and interferes with the interaction between NbGAI and NbGID2 to prevent the degradation of NbGAI, leading to the inhibition of the GA signaling pathway. Silencing of NbGAI or exogenous GA 3 treatment significantly reduces viral accumulation and disease symptoms in N. benthamiana plants. The same results were proved by the experiments with C4 protein encoded by tobacco curly shoot virus (TbCSV). Therefore, we propose a novel mechanism of geminivirus C4 proteins controling virus infection and disease symptom development through interfering GA signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Renata Finelli ◽  
Sara Darbandi ◽  
Peter Natesan Pushparaj ◽  
Ralf Henkel ◽  
Edmund Ko ◽  
...  

Varicocele, a condition associated with increased oxidative stress, negatively affects sperm DNA integrity and reduces pregnancy rates. However, the molecular mechanisms related to DNA integrity, damage, and repair in varicocele patients remain unclear. This study aimed to determine the role of DNA repair molecular mechanisms in varicocele-related infertility by combining an in silico proteomics approach with wet-laboratory techniques. Proteomics results previously generated from varicocele patients (n=50) and fertile controls (n=10) attending our Andrology Center were reanalyzed using bioinformatics tools, including the WEB-based Gene SeT AnaLysis Toolkit, Open Target Platform, and Ingenuity Pathway Analysis (IPA), to identify differentially expressed proteins (DEPs) involved in DNA repair. Subsequently, selected DEPs in spermatozoa were validated using western blotting in varicocele (n = 13) and fertile control (n = 5) samples. We identified 99 DEPs mainly involved in male reproductive system disease (n=66) and male infertility (n=47). IPA analysis identified five proteins [fatty acid synthase (FASN), myeloperoxidase (MPO), mitochondrial aconitate hydratase (ACO2), nucleoporin 93 (NUP93), and 26S proteasome non-ATPase regulatory subunit 14 (PSMD14)] associated with DNA repair deficiency, which showed altered expression in varicocele (P &lt;0.03). We validated ACO2 downregulation (fold change=0.37, change%=-62.7%, P=0.0001) and FASN overexpression (fold change = 4.04, change %= 303.7%, P = 0.014) in men with varicocele compared to controls. This study combined a unique in silico approach with an in vitro validation of the molecular mechanisms that may be responsible for varicocele-associated infertility. We identified ACO2 and FASN as possible proteins involved in DNA repair, whose altered expression may contribute to DNA damage in varicocele pathophysiology.


2021 ◽  
Author(s):  
Yixi Wang ◽  
Shuangshuang Yan ◽  
Bingwei Yu ◽  
Yuwei Gan ◽  
Jiangjun Lei ◽  
...  

AbstractBacterial wilt (BW) is a soil-borne disease that severely impacts plant growth and productivity globally. Ubiquitination plays a crucial role in disease resistance. Our previous research indicated that NAC transcription factor SmNAC negatively regulates BW resistance in eggplant (Solanum melongena). However, whether the ubiquitin/26S proteasome system (UPS) participates in this regulation is unknown.This study used SmNAC as a bait to screen eggplant cDNA library and obtained SmDDA1b, an E3 ubiquitin ligase. Subcellular location and bimolecular fluorescence complementation assays revealed that SmDDA1b could interact with SmNAC in the nucleus. The in vivo and in vitro ubiquitination experiments indicated that SmDDA1b can degrade SmNAC through UPS. However, the discovery of negative regulation of SmDDA1b expression by SmNAC showed that there was a negative feedback loop between SmNAC and SmDDA1b in eggplant.The SmDDA1b-overexpressed lines showed a higher BW resistance associated with high expression levels of salicylic acid (SA)-related genes and SA content than the wild-type lines. However, SmDDA1b-silencing lines showed the opposite results, indicating that SmDDA1b is a positive regulatory gene for BW resistance.This study provides a candidate gene that can enhance BW resistance in eggplants. In addition, it provides insight into a mechanism that promotes plant disease resistance via the SmDDA1b-SmNAC-SA pathway.


Sign in / Sign up

Export Citation Format

Share Document