scholarly journals Fires prime terrestrial organic carbon for riverine export to the global oceans

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthew W. Jones ◽  
Alysha I. Coppola ◽  
Cristina Santín ◽  
Thorsten Dittmar ◽  
Rudolf Jaffé ◽  
...  
2020 ◽  
Author(s):  
Sean Michael Kearney ◽  
Elaina Thomas ◽  
Allison Coe ◽  
Sallie W. Chisholm

Abstract BackgroundProchlorococcus and Synechococcus are responsible for around 10% of global net primary productivity, serving as part of the foundation of marine food webs. Heterotrophic bacteria are often co-isolated with these picocyanobacteria in seawater enrichment cultures that contain no added organic carbon; heterotrophs grow on organic carbon supplied by the photolithoautotrophs. We have maintained these cultures of Prochlorococcus and Synechococcus for 100s to 1000s of generations; they represent ideal microcosms for examining the selective pressures shaping autotroph/heterotroph interactions. ResultsWe examine the diversity of heterotrophs in 74 enrichment cultures of these picocyanobacteria obtained from diverse areas of the global oceans. Heterotroph community composition differed between clades and ecotypes of the autotrophic ‘hosts’ but there was significant overlap in heterotroph community composition. Differences were associated with timing, location, depth, and methods of isolation, suggesting the particular conditions surrounding isolation have a persistent effect on long-term culture composition. The majority of heterotrophs in the cultures are rare in the global ocean; enrichment conditions favor the opportunistic outgrowth of these rare bacteria. We did find a few examples, such as heterotrophs in the family Rhodobacteraceae, that are ubiquitous and abundant in cultures and in the global oceans; their abundance in the wild is also positively correlated with that of picocyanobacteria. ConclusionsCollectively, the cultures converged on similar compositions, likely from bottlenecking and selection that happens during the early stages of enrichment for the picocyanobacteria. We highlight the potential for examining ecologically relevant relationships by identifying patterns of distribution of culture-enriched organisms in the global oceans.


2008 ◽  
Vol 8 (4) ◽  
pp. 16445-16471 ◽  
Author(s):  
S. R. Arnold ◽  
D. V. Spracklen ◽  
J. Williams ◽  
N. Yassaa ◽  
J. Sciare ◽  
...  

Abstract. We have combined the first satellite maps of the global distribution of phytoplankton functional type and new measurements of phytoplankton-specific isoprene productivities, with available remote marine isoprene observations and a global model, to evaluate our understanding of the marine isoprene source and its impacts on organic aerosol abundances. Using satellite products to scale up data on phytoplankton-specific isoprene productivity to the global oceans, we infer a mean "bottom-up" oceanic isoprene emission of 0.31±0.08 (1 σ) Tg/yr. By minimising the mean bias between the model and isoprene observations in the marine atmosphere remote from the continents, we produce a "top-down" oceanic isoprene source estimate of 1.9 Tg/yr. We suggest our reliance on limited atmospheric isoprene data, and limited knowledge of isoprene productivity across the broad range of phytoplankton communities in the oceans as contributors to this difference between the two estimates. Inclusion of secondary organic aerosol (SOA) production from oceanic isoprene in the model with a 2% yield produces small contributions (0.01–1.6%) to observed organic carbon (OC) aerosol mass at three remote marine sites in the Northern and Southern Hemispheres. In addition, we find the seasonal cycle of the isoprene SOA source is out of phase with the observed cycle in OC in the remote Southern Ocean. Based on these findings we suggest an insignificant role for isoprene in modulating remote marine aerosol abundances, giving further support to a recently postulated primary OC source in the remote marine atmosphere.


2020 ◽  
Author(s):  
Sean Michael Kearney ◽  
Elaina Thomas ◽  
Allison Coe ◽  
Sallie W. Chisholm

Abstract BackgroundProchlorococcus and Synechococcus are responsible for around 10% of global net primary productivity, serving as part of the foundation of marine food webs. Heterotrophic bacteria are often co-isolated with these picocyanobacteria in seawater enrichment cultures that contain no added organic carbon; heterotrophs grow on organic carbon supplied by the photolithoautotrophs. We have maintained these cultures of Prochlorococcus and Synechococcus for 100s to 1000s of generations; they represent ideal microcosms for examining the selective pressures shaping autotroph/heterotroph interactions. ResultsWe examine the diversity of heterotrophs in 74 enrichment cultures of these picocyanobacteria obtained from diverse areas of the global oceans. Heterotroph community composition differed between clades and ecotypes of the autotrophic ‘hosts’ but there was significant overlap in heterotroph community composition. Differences were associated with timing, location, depth, and methods of isolation, suggesting the particular conditions surrounding isolation have a persistent effect on long-term culture composition. The majority of heterotrophs in the cultures are rare in the global ocean; enrichment conditions favor the opportunistic outgrowth of these rare bacteria. We did find a few examples, such as heterotrophs in the family Rhodobacteraceae, that are ubiquitous and abundant in cultures and in the global oceans; their abundance in the wild is also positively correlated with that of picocyanobacteria. ConclusionsCollectively, the cultures converged on similar compositions, likely from bottlenecking and selection that happens during the early stages of enrichment for the picocyanobacteria. We highlight the potential for examining ecologically relevant relationships by identifying patterns of distribution of culture-enriched organisms in the global oceans.


2009 ◽  
Vol 9 (4) ◽  
pp. 1253-1262 ◽  
Author(s):  
S. R. Arnold ◽  
D. V. Spracklen ◽  
J. Williams ◽  
N. Yassaa ◽  
J. Sciare ◽  
...  

Abstract. We have combined the first satellite maps of the global distribution of phytoplankton functional type and new measurements of phytoplankton-specific isoprene productivities, with available remote marine isoprene observations and a global model, to evaluate our understanding of the marine isoprene source and its impacts on organic aerosol abundances. Using satellite products to scale up data on phytoplankton-specific isoprene productivity to the global oceans, we infer a mean "bottom-up" oceanic isoprene emission of 0.31±0.08 (1σ) Tg/yr. By minimising the mean bias between the model and isoprene observations in the marine atmosphere remote from the continents, we produce a "top-down" oceanic isoprene source estimate of 1.9 Tg/yr. We suggest our reliance on limited atmospheric isoprene data, difficulties in simulating in-situ isoprene production rates in laboratory phytoplankton cultures, and limited knowledge of isoprene production mechanisms across the broad range of phytoplankton communities in the oceans under different environmental conditions as contributors to this difference between the two estimates. Inclusion of secondary organic aerosol (SOA) production from oceanic isoprene in the model with a 2% yield produces small contributions (0.01–1.4%) to observed organic carbon (OC) aerosol mass at three remote marine sites in the Northern and Southern Hemispheres. Based on these findings we suggest an insignificant role for isoprene in modulating remote marine aerosol abundances, giving further support to a recently postulated primary OC source in the remote marine atmosphere.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Sean M. Kearney ◽  
Elaina Thomas ◽  
Allison Coe ◽  
Sallie W. Chisholm

Abstract Background The cyanobacteria Prochlorococcus and Synechococcus are responsible for around 10% of global net primary productivity, serving as part of the foundation of marine food webs. Heterotrophic bacteria are often co-isolated with these picocyanobacteria in seawater enrichment cultures that contain no added organic carbon; heterotrophs grow on organic carbon supplied by the photolithoautotrophs. For examining the selective pressures shaping autotroph/heterotroph interactions, we have made use of unialgal enrichment cultures of Prochlorococcus and Synechococcus maintained for hundreds to thousands of generations in the lab. We examine the diversity of heterotrophs in 74 enrichment cultures of these picocyanobacteria obtained from diverse areas of the global oceans. Results Heterotroph community composition differed between clades and ecotypes of the autotrophic ‘hosts’ but there was significant overlap in heterotroph community composition across these cultures. Collectively, the cultures were comprised of many shared taxa, even at the genus level. Yet, observed differences in community composition were associated with time since isolation, location, depth, and methods of isolation. The majority of heterotrophs in the cultures are rare in the global ocean, but enrichment conditions favor the opportunistic outgrowth of these rare bacteria. However, we found a few examples, such as bacteria in the family Rhodobacteraceae, of heterotrophs that were ubiquitous and abundant in cultures and in the global oceans. We found their abundance in the wild is also positively correlated with that of picocyanobacteria. Conclusions Particular conditions surrounding isolation have a persistent effect on long-term culture composition, likely from bottlenecking and selection that happen during the early stages of enrichment for the picocyanobacteria. We highlight the potential for examining ecologically relevant relationships by identifying patterns of distribution of culture-enriched organisms in the global oceans.


2009 ◽  
Vol 55 (1) ◽  
pp. 315-323 ◽  
Author(s):  
C. J. Mundy a ◽  
Michel Gosselin ◽  
Michel Starr ◽  
Christine Michelc

2020 ◽  
Author(s):  
Sean M. Kearney ◽  
Elaina Thomas ◽  
Allison Coe ◽  
Sallie W. Chisholm

ABSTRACTProchlorococcus and Synechococcus are responsible for around 10% of global net primary productivity, serving as part of the foundation of marine food webs. Heterotrophic bacteria are often co-isolated with these picocyanobacteria in seawater enrichment cultures that contain no added organic carbon; heterotrophs grow on organic carbon supplied by the photolithoautotrophs. We have maintained these cultures of Prochlorococcus and Synechococcus for 100s to 1000s of generations; they represent ideal microcosms for examining the selective pressures shaping autotroph/heterotroph interactions. Here we examine the diversity of heterotrophs in 74 enrichment cultures of these picocyanobacteria obtained from diverse areas of the global oceans. Heterotroph community composition differed between clades and ecotypes of the autotrophic ‘hosts’ but there was significant overlap in heterotroph community composition. Differences were associated with timing, location, depth, and methods of isolation, suggesting the particular conditions surrounding isolation have a persistent effect on long-term culture composition. The majority of heterotrophs in the cultures are rare in the global ocean; enrichment conditions favor the opportunistic outgrowth of these rare bacteria. We did find a few examples, such as heterotrophs in the family Rhodobacteraceae, that are ubiquitous and abundant in cultures and in the global oceans; their abundance in the wild is also positively correlated with that of picocyanobacteria. Collectively, the cultures converged on similar compositions, likely from bottlenecking and selection that happens during the early stages of enrichment for the picocyanobacteria. We highlight the potential for examining ecologically relevant relationships by identifying patterns of distribution of culture-enriched organisms in the global oceans.IMPORTANCEOne of the biggest challenges in marine microbial ecology is to begin to understand the rules that govern the self-assembly of these complex communities. The picocyanobacteria Prochlorococcus and Synechococcus comprise the most numerous photosynthetic organisms in the sea and supply a significant fraction of the organic carbon that feeds diverse heterotrophic microbes. When initially isolated into cultures, Prochlorococcus and Synechococcus carry with them select heterotrophic microorganisms that depend on them for organic carbon. The cultures self-assemble into stable communities of diverse microorganisms and are microcosms for understanding microbial interdependencies. Primarily faster-growing, relatively rare, copiotrophic heterotrophic bacteria – as opposed to oligotrophic bacteria that are abundant in picocyanobacterial habitats – are selected for in these cultures, suggesting that these copiotrophs experience these cultures as they would high carbon fluxes associated with particles, phycospheres of larger cells, or actual attachment to picocyanobacteria in the wild.


Sign in / Sign up

Export Citation Format

Share Document