family rhodobacteraceae
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 25)

H-INDEX

12
(FIVE YEARS 5)

2021 ◽  
Vol 8 ◽  
Author(s):  
Laura Geissler ◽  
Valentine Meunier ◽  
Nils Rädecker ◽  
Gabriela Perna ◽  
Riccardo Rodolfo-Metalpa ◽  
...  

The ecological success of corals depends on their association with microalgae and a diverse bacterial assemblage. Ocean acidification (OA), among other stressors, threatens to impair host-microbial metabolic interactions that underlie coral holobiont functioning. Volcanic CO2 seeps offer a unique opportunity to study the effects of OA in natural reef settings and provide insight into the long-term adaptations under a low pH environment. Here we compared nitrogen-fixing bacteria (diazotrophs) associated with four coral species (Pocillopora damicornis, Galaxea fascicularis, Acropora secale, and Porites rus) collected from CO2 seeps at Tutum Bay (Papua New Guinea) with those from a nearby ambient CO2 site using nifH amplicon sequencing to characterize the effects of seawater pH on bacterial communities and nitrogen cycling. Diazotroph communities were of generally low diversity across all coral species and for both sampling sites. Out of a total of 25 identified diazotroph taxa, 14 were associated with P. damicornis, of which 9 were shared across coral species. None of the diazotroph taxa, however, were consistently found across all coral species or across all samples within a species pointing to a high degree of diazotroph community variability. Rather, the majority of sampled colonies were dominated by one or two diazotroph taxa of high relative abundance. Pocillopora damicornis and Galaxea fascicularis that were sampled in both environments showed contrasting community assemblages between sites. In P. damicornis, Gammaproteobacteria and Cyanobacteria were prevalent under ambient pCO2, while a single member of the family Rhodobacteraceae was present at high relative abundance at the high pCO2 site. Conversely, in G. fascicularis diazotroph communities were indifferent between both sites. Diazotroph community changes in response to OA seem thus variable within as well as between host species, potentially arguing for haphazard diazotroph community assembly. This warrants further research into the underlying factors structuring diazotroph community assemblages and their functional role in the coral holobiont.


Author(s):  
Md. Umar ◽  
Kottekkatu Padinchati Krishnan ◽  
Rupesh Kumar Sinha ◽  
Thasreefa Kannukkarathi ◽  
Titus Susan Merlin ◽  
...  

2021 ◽  
Author(s):  
Shuai-Ting Yun ◽  
Zhuo Chen ◽  
Yan-Jun Yi ◽  
Ming-Jing Zhang ◽  
Shu-Kun Gao ◽  
...  

Abstract A Gram-stain-negative, pink-pigmented, facultatively anaerobic, gliding and rod-shaped bacterium, showing optimum growth at 33°C, designated as strain H15T , was isolated from the gut microbial of the Acmaea from Weihai, Shandong Province, China and characterised phylogenetically, phenotypically and chemotaxonomically. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that the strain belonged to the family Rhodobacteraceae and was associated with members of the recognized genera, the closest relative was the type strain of Pseudaestuariivita atlantica (96.7%). Genome analysis showed that the genome size was 3893398 bp and the DNA G+C content obtained from the draft genome sequence was 56.7%. The secondary metabolites based on genome predicated that the strain H15T contained one cluster of lassopeptide, one cluster of bacteriocin, two clusters of terpene production, two clusters of homoserine lactone(Hserlactone)production and one cluster of beta lactone. The average amino acid identity, average nucleotide identity and digital DNA–DNA hybridization values between genome sequences of strain H15T and all the type strains of the recognized taxa compared were lower than 63.1,72.0 and 19.7%, respectively. Based on the analysis of chemical components, the predominant cellular fatty acids were summed featured 8(C18:1ω7c/ω6c,46.1%), C 20:1ω7c (17.1%), the major polar lipids contained phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine and an unidentified lipid and the predominant menaquinone was Q10. Therefore, the combined chemotaxonomic, phenotypic and phylogenetic data indicated that the strain was considered to represent a novel species of the genus Pseudaestuariivita and the name Pseudaestuariivita rosea sp. nov. was proposed for strain H15T(MCCC 1K04420T=KCTC 82505T).


Author(s):  
Ke-Lei Zhu ◽  
Xiao-Qun Wang ◽  
Tian-Shu Zhang ◽  
Dan-Dan Shang ◽  
Zong-Jun Du

Two Gram-stain-negative, moderately halophilic, non-motile, rod-shaped, pale yellow, and aerobic strains, designated WDS1C4T and WDS4C29T, were isolated from a marine solar saltern in Weihai, Shandong Province, PR China. Growth of strain WDS1C4T occurred at 10–45 °C (optimum, 37 °C), with 4–16 % (w/v) NaCl (optimum, 8 %) and at pH 6.5–9.0 (optimum, pH 7.5). Growth of strain WDS4C29T occurred at 10–45 °C (optimum, 40 °C), with 2–18 % (w/v) NaCl (optimum, 6 %) and at pH 6.5–9.0 (optimum, pH 7.5). Q-10 was the sole respiratory quinone of the two strains. The major polar lipids of strains WDS1C4T and WDS4C29T were phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The major cellular fatty acid in strains WDS1C4T and WDS4C29T was C18 : 1  ω7c, and the genomic DNA G+C contents of strains WDS1C4T and WDS4C29T were 67.6 and 63.3 mol%, respectively. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strains WDS1C4T and WDS4C29T were members of the family Rhodobacteraceae and showed 94.3 and 95.3 % similarities to their closest relative, Celeribacter indicus , respectively. The similarity between WDS1C4T and WDS4C29T was 97.3 %. Differential phenotypic and genotypic characteristics of the two isolates from recognized genera showed that the two strains should be classified as representing two novel species in a new genus for which the names Salibaculum halophilum gen. nov., sp. nov. (type species, type strain WDS1C4T=MCCC 1H00179T=KCTC 52542T) and Salibaculum griseiflavum sp. nov. (WDS4C29T=MCCC 1H00175T=KCTC 52541T) are proposed.


2021 ◽  
Vol 9 (6) ◽  
pp. 1115
Author(s):  
Kathryn Forcone ◽  
Felipe H. Coutinho ◽  
Giselle S. Cavalcanti ◽  
Cynthia B. Silveira

Roseobacters are globally abundant bacteria with critical roles in carbon and sulfur biogeochemical cycling. Here, we identified 173 new putative prophages in 79 genomes of Rhodobacteraceae. These prophages represented 1.3 ± 0.15% of the bacterial genomes and had no to low homology with reference and metagenome-assembled viral genomes from aquatic and terrestrial ecosystems. Among the newly identified putative prophages, 35% encoded auxiliary metabolic genes (AMGs), mostly involved in secondary metabolism, amino acid metabolism, and cofactor and vitamin production. The analysis of integration sites and gene homology showed that 22 of the putative prophages were actually gene transfer agents (GTAs) similar to a GTA of Rhodobacter capsulatus. Twenty-three percent of the predicted prophages were observed in the TARA Oceans viromes generated from free viral particles, suggesting that they represent active prophages capable of induction. The distribution of these prophages was significantly associated with latitude and temperature. The prophages most abundant at high latitudes encoded acpP, an auxiliary metabolic gene involved in lipid synthesis and membrane fluidity at low temperatures. Our results show that prophages and gene transfer agents are significant sources of genomic diversity in roseobacter, with potential roles in the ecology of this globally distributed bacterial group.


Author(s):  
Jeeeun Park ◽  
Young-Sam Kim ◽  
Seong-Jin Kim ◽  
Sang-Eon Kim ◽  
Hyun-Kyoung Jung ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 542
Author(s):  
Yeon-Ji Chae ◽  
Hye-Ji Oh ◽  
Kwang-Hyeon Chang ◽  
Ihn-Sil Kwak ◽  
Hyunbin Jo

The gut bacterial communities of copepods can affect metabolic processes, and consequently, their activity can be related to the release of organic substances to the environment. Hence, they are important for organic matter cycling in marine coast food webs. However, information regarding the variation in gut bacterial communities based on copepod species and environmental variations is limited. We analysed the differences in gut bacterial communities from dominant copepod species, i.e., Acartia hudsonica, Sinocalanus tenellus, and Pseudodiaptomus inopinus, in a brackish reservoir. The core bacteria among the copepod species and locations consisted of the following main operational taxonomic units (OTUs): Novosphingobium capsulatum and the family Rhodobacteraceae belonging to Alphaproteobacteria, which is abundant in seawater and freshwater aquatic ecosystems as a zooplankton-associated bacterial community. The bacterial community composition of each copepod (except the core species) showed high variability. The bacterial community diversity differed depending on the copepod species and the sites’ environmental conditions, especially salinity, e.g., compositional variations in the bacterial community of P. inopinus were high at sites with low salinity. Therefore, the gut bacterial community of each copepod species responds differently to the environment.


2021 ◽  
Vol 114 (3) ◽  
pp. 303-311
Author(s):  
Dadong Dai ◽  
Yangjie Li ◽  
Wenxuan He ◽  
Fang Qin ◽  
Jinshui Zheng ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Sean M. Kearney ◽  
Elaina Thomas ◽  
Allison Coe ◽  
Sallie W. Chisholm

Abstract Background The cyanobacteria Prochlorococcus and Synechococcus are responsible for around 10% of global net primary productivity, serving as part of the foundation of marine food webs. Heterotrophic bacteria are often co-isolated with these picocyanobacteria in seawater enrichment cultures that contain no added organic carbon; heterotrophs grow on organic carbon supplied by the photolithoautotrophs. For examining the selective pressures shaping autotroph/heterotroph interactions, we have made use of unialgal enrichment cultures of Prochlorococcus and Synechococcus maintained for hundreds to thousands of generations in the lab. We examine the diversity of heterotrophs in 74 enrichment cultures of these picocyanobacteria obtained from diverse areas of the global oceans. Results Heterotroph community composition differed between clades and ecotypes of the autotrophic ‘hosts’ but there was significant overlap in heterotroph community composition across these cultures. Collectively, the cultures were comprised of many shared taxa, even at the genus level. Yet, observed differences in community composition were associated with time since isolation, location, depth, and methods of isolation. The majority of heterotrophs in the cultures are rare in the global ocean, but enrichment conditions favor the opportunistic outgrowth of these rare bacteria. However, we found a few examples, such as bacteria in the family Rhodobacteraceae, of heterotrophs that were ubiquitous and abundant in cultures and in the global oceans. We found their abundance in the wild is also positively correlated with that of picocyanobacteria. Conclusions Particular conditions surrounding isolation have a persistent effect on long-term culture composition, likely from bottlenecking and selection that happen during the early stages of enrichment for the picocyanobacteria. We highlight the potential for examining ecologically relevant relationships by identifying patterns of distribution of culture-enriched organisms in the global oceans.


Author(s):  
Piyanat Charoenyingcharoen ◽  
Ji-Sun Kim ◽  
Gunjana Theeragool ◽  
Keun-Chul Lee ◽  
Pattaraporn Yukphan ◽  
...  

Two novel Gram-stain-negative, rod-shaped and non-motile bacterial strains, designated B5-SW-15T and C2-DW-16, were isolated from water collected in mangrove forests in Ranong Province, Thailand. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains B5-SW-15T and C2-DW-16 belonged to the genus Donghicola and were most closely related to Donghicola tyrosinivorans DSM 100212T (98.2 and 98.1 %, respectively) and Donghicola eburneus DSM 29127T (97.7 and 97.6 %, respectively). The average nucleotide identity and digital DNA–DNA hybridization values between strain B5-SW-15T, strain C2-DW-16 and related species were 95.8 and 71.6 % (to strain C2-DW-16), 76.8 and 21.3 % (to D. tyrosinivorans DSM 100212T) and 80.3 and 24.2 % (to D. eburneus DSM 29127T), respectively. The predominant cellular fatty acids (>5 %) were summed feature 8 (C18 : 1  ω6c and/or C18 : 1  ω7c), C16 : 0 and C12 : 1 3-OH. Ubiquinone Q-10 was the sole respiratory quinone. DNA G+C contents of the isolates were 61.0 and 61.2 mol% based on whole genome sequences. Strains B5-SW-15T and C2-DW-16 contained aminolipid, phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol as the major polar lipids. On the basis of the results from phenotypic, chemotaxonomic and phylogenetic analyses, strains B5-SW-15T and C2-DW-16 constitute a novel species of the genus Donghicola in the family Rhodobacteraceae for which the name Donghicola mangrovi sp. nov. is proposed. The type strain is B5-SW-15T (=BCC 56522T=TBRC 9562T=KCTC 72743T).


Sign in / Sign up

Export Citation Format

Share Document