scholarly journals Polarization-transparent silicon photonic add-drop multiplexer with wideband hitless tuneability

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Morichetti ◽  
Maziyar Milanizadeh ◽  
Matteo Petrini ◽  
Francesco Zanetto ◽  
Giorgio Ferrari ◽  
...  

AbstractFlexible optical networks require reconfigurable devices with operation on a wavelength range of several tens of nanometers, hitless tuneability (i.e. transparency to other channels during reconfiguration), and polarization independence. All these requirements have not been achieved yet in a single photonic integrated device and this is the reason why the potential of integrated photonics is still largely unexploited in the nodes of optical communication networks. Here we report on a fully-reconfigurable add-drop silicon photonic filter, which can be tuned well beyond the extended C-band (almost 100 nm) in a complete hitless (>35 dB channel isolation) and polarization transparent (1.2 dB polarization dependent loss) way. This achievement is the result of blended strategies applied to the design, calibration, tuning and control of the device. Transmission quality assessment on dual polarization 100 Gbit/s (QPSK) and 200 Gbit/s (16-QAM) signals demonstrates the suitability for dynamic bandwidth allocation in core networks, backhaul networks, intra- and inter-datacenter interconnects.

2021 ◽  
Author(s):  
Francesco Morichetti ◽  
Maziyar Milanizadeh ◽  
Matteo Petrini ◽  
Francesco Zanetto ◽  
Giorgio Ferrari ◽  
...  

Abstract Flexible optical networks require reconfigurable devices with operation on a wavelength range of several tens of nanometers, hitless tuneability (i.e. transparency to other channels during reconfiguration), and polarization independence. All these requirements have not been achieved yet in a single photonic integrated device and this is the reason why the potential of integrated photonics is still largely unexploited in the nodes of optical communication networks. Here we report on a fully-reconfigurable add-drop silicon photonic filter, which can be tuned well beyond the extended C-band (almost 100 nm) in a complete hitless (>35 dB channel isolation) and polarization transparent (1.2 dB polarization dependent loss) way. This achievement is the result of blended strategies applied to the design, calibration, tuning and control of the device. Transmission quality assessment on dual polarization 100 Gbit/s (QPSK) and 200 Gbit/s (16-QAM) signals demonstrate the suitability for dynamic bandwidth allocation in core networks, back-haul networks, intra- and inter-datacenter interconnects.


2020 ◽  
Author(s):  
Francesco Morichetti ◽  
Maziyar Milanizadeh ◽  
Matteo Petrini ◽  
Francesco Zanetto ◽  
Giorgio Ferrari ◽  
...  

Abstract Flexible optical networks require reconfigurable devices with operation on a wavelength range of several tens of nanometers, hitless tuneability (i.e. transparency to other channels during reconfiguration), and polarization independence. All these requirements have not been achieved yet in a single photonic integrated device and this is the reason why the potential of integrated photonics is still largely unexploited in the nodes of optical communication networks. Here we report on a fully-reconfigurable add-drop silicon photonic filter, which can be tuned well beyond the extended C-band (almost 100 nm) in a complete hitless (>35 dB channel isolation) and polarization transparent (1.2 dB polarization dependent loss) way. This achievement is the result of blended strategies applied to the design, calibration, tuning and control of the device. Transmission quality assessment on dual polarization 100 Gbit/s (QPSK) and 200 Gbit/s (16-QAM) signals demonstrate the suitability for dynamic bandwidth allocation in core networks, back-haul networks, intra- and inter-datacenter interconnects.


2014 ◽  
Vol 631-632 ◽  
pp. 795-800
Author(s):  
Fang Miao ◽  
Li Feng

This paper proposes an alternative solution for Long-Reach Ethernet passive optical networks. The proposed scheme enables directly communication between ONUs for the transmission of local traffic and control messages, and each ONU calculates bandwidth allocation independently without participation of OLT to remedy the long propagation delay of LR-PON. This scheme also supports centralized control by OLT to change ONUs’ parameters synchronously. Simulation results show that this scheme can effectively reduce the end-to-end packet delay, while maintaining high throughput in uplink channel.


Sign in / Sign up

Export Citation Format

Share Document