scholarly journals Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hyeonseok Kim ◽  
Joonhwa Choi ◽  
Kyun Kyu Kim ◽  
Phillip Won ◽  
Sukjoon Hong ◽  
...  

AbstractDevelopment of an artificial camouflage at a complete device level remains a vastly challenging task, especially under the aim of achieving more advanced and natural camouflage characteristics via high-resolution camouflage patterns. Our strategy is to integrate a thermochromic liquid crystal layer with the vertically stacked, patterned silver nanowire heaters in a multilayer structure to overcome the limitations of the conventional lateral pixelated scheme through the superposition of the heater-induced temperature profiles. At the same time, the weaknesses of thermochromic camouflage schemes are resolved in this study by utilizing the temperature-dependent resistance of the silver nanowire network as the process variable of the active control system. Combined with the active control system and sensing units, the complete device chameleon model successfully retrieves the local background color and matches its surface color instantaneously with natural transition characteristics to be a competent option for a next-generation artificial camouflage.

2020 ◽  
Author(s):  
Daniel Rooney ◽  
Mathew Roseman ◽  
Charles Shotridge ◽  
Jeffrey Aschenbrenner ◽  
Sanjay Jayaram

Author(s):  
A.V. NEMENKO ◽  
M.M. NIKITIN

The transformation of a spherical concave mirror into a parabolic one with the help of elastic bending deformations is considered. The magnitude and direction of the load, which creates the necessary bend for transforming the mirror with the given parameters, are determined. Uneven material removal during machining is replaced by the bend of an optically accurate spherical surface already obtained. The application of the results to the creation of an active control system for the shaping of the surface of a paraboloid of rotation is considered. The proposed finishing technology is aimed at solving the problem of guaranteed obtaining optically accurate surface of a parabolic mirror.


2000 ◽  
Author(s):  
Marc Duvernier ◽  
Livier Reithler ◽  
Jean Y. Guerrero ◽  
Rinaldo A. Rossi

Sign in / Sign up

Export Citation Format

Share Document