double hopf bifurcation
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 30 (1) ◽  
pp. 382-403
Author(s):  
Gheorghe Moza ◽  
◽  
Mihaela Sterpu ◽  
Carmen Rocşoreanu ◽  
◽  
...  

<abstract><p>The generic double-Hopf bifurcation is presented in detail in literature in textbooks like references. In this paper we complete the study of the double-Hopf bifurcation with two degenerate (or nongeneric) cases. In each case one of the generic conditions is not satisfied. The normal form and the corresponding bifurcation diagrams in each case are obtained. New possibilities of behavior which do not appear in the generic case were found.</p></abstract>


2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Lijun Pei ◽  
Chenyu Wang

In this paper, we consider the complex dynamics of a fiscal dynamical model, which was improved from Wolfstetter classical growth cycle model by Sportelli et al. The main work of the present paper is to study the impact of fiscal policy delays on the national income adjustment processes using a dynamical method, such as double Hopf bifurcation analysis. We first use DDE-BIFTOOL to find the double Hopf bifurcation points of the system, and draw the bifurcation diagrams with two bifurcation parameters, i.e. the tax collection delay [Formula: see text] and the public expenditure decision-making delay [Formula: see text]. Then we employ the method of multiple scales to obtain two amplitude equations. By analyzing these amplitude equations, we derive the classification and unfolding of these double Hopf bifurcation points. And three types of double Hopf bifurcations are found. Finally, we verify the results by numerical simulations. We find complex dynamic behaviors of the system via the analytical method, such as stable equilibrium, stable periodic, quasi-periodic and phase-locked solutions in respective regions. The dynamical phenomena can help policy makers to choose a proper range of the delays so that they could effectively formulate fiscal policies to stabilize the economy.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2444
Author(s):  
Yani Chen ◽  
Youhua Qian

In this paper, the normal form and central manifold theories are used to discuss the influence of two-degree-of-freedom coupled van der Pol oscillators with time delay feedback. Compared with the single-degree-of-freedom time delay van der Pol oscillator, the system studied in this paper has richer dynamical behavior. The results obtained include: the change of time delay causing the stability switching of the system, and the greater the time delay, the more complicated the stability switching. Near the double Hopf bifurcation point, the system is simplified by using the normal form and central manifold theories. The system is divided into six regions with different dynamical properties. With the above results, for practical engineering problems, we can perform time delay feedback adjustment to make the system show amplitude death, limit loop, and so on. It is worth noting that because of the existence of unstable limit cycles in the system, the limit cycle cannot be obtained by numerical solution. Therefore, we derive the approximate analytical solution of the system and simulate the time history of the interaction between two frequencies in Region IV.


2021 ◽  
Vol 31 (08) ◽  
pp. 2130022
Author(s):  
Miaorong Zhang ◽  
Xiaofang Zhang ◽  
Qinsheng Bi

This paper focuses on the influence of two scales in the frequency domain on the behaviors of a typical dynamical system with a double Hopf bifurcation. By introducing an external periodic excitation to the normal form of the vector field with double Hopf bifurcation at the origin and taking the exciting frequency far less than the natural frequency, a theoretical model with two scales in the frequency domain is established. Regarding the whole exciting term as a slow-varying parameter leads to a generalized autonomous system, in which the equilibrium branches and their bifurcations with the variation of the slow-varying parameter can be derived. With the increase of the exciting amplitude, different types of bifurcations may be involved in the generalized autonomous system, resulting in several qualitatively different forms of bursting attractors, the mechanism of which is presented by overlapping the transformed phase portraits and the bifurcations of the equilibrium branches. It is found that the single mode 2D torus may evolve to the bursting attractors with mixed modes, in which the trajectory alternates between the single mode oscillations and the mixed mode oscillations. Furthermore, the transitions between the quiescent states and the spiking states may not occur exactly at the bifurcation points because of the slow passage effect, while Hopf bifurcations may cause different forms of repetitive spiking oscillations.


2021 ◽  
Vol 26 (1) ◽  
pp. 72-92
Author(s):  
Yuying Liu ◽  
Junjie Wei

In this paper, we consider a diffusive predator–prey system with strong Allee effect and two delays. First, we explore the stability region of the positive constant steady state by calculating the stability switching curves. Then we derive the Hopf and double Hopf bifurcation theorem via the crossing directions of the stability switching curves. Moreover, we calculate the normal forms near the double Hopf singularities by taking two delays as parameters. We carry out some numerical simulations for illustrating the theoretical results. Both theoretical analysis and numerical simulation show that the system near double Hopf singularity has rich dynamics, including stable spatially homogeneous and inhomogeneous periodic solutions. Finally, we evaluate the influence of two parameters on the existence of double Hopf bifurcation.


Sign in / Sign up

Export Citation Format

Share Document