super typhoon
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 126)

H-INDEX

17
(FIVE YEARS 6)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 130
Author(s):  
Haoyu Liu ◽  
Lijuan Wang ◽  
Yufan Dai ◽  
Hong Chen

Based on the China Meteorological Administration (CMA) best-track data, the ERA5 reanalysis, and the Global Precipitation Measurement (GPM) precipitation data, this paper analyzes the reasons for the heavy rainfall event of Super Typhoon Rammasun in 2014, and the results are as follows: (1) Rammasun was blocked by the western Pacific subtropical high (WPSH), the continental high, and the mid-latitude westerly trough. Such a stable circulation pattern maintained the vortex circulation of Rammasun. (2) During the period of landfall, the southwest summer monsoon surge was reinforced due to the dramatic increase of the zonal wind and the cross-equatorial flow near 108° E. The results of the dynamic monsoon surge index (DMSI) and boundary water vapor budget (BWVB) show that the monsoon surge kept providing abundant water vapor for Rammasun, which led to the enhanced rainfall. (3) The East Asian monsoon manifested an obvious low-frequency oscillation with a main period of 20–40 days in the summer of 2014, which propagated northward significantly. When the low-frequency oscillation reached the extremely active phase, the monsoon surge hit the maximum and influenced the circulation of Rammasun. Meanwhile, the convergence and water vapor flux associated with the low-frequency oscillation significantly contributed to the heavy rainfall.


2022 ◽  
Vol 9 ◽  
Author(s):  
Zhen Gao ◽  
Liguang Wu ◽  
Xingyang Zhou

It has been numerically demonstrated that the turbulence above the boundary is important to tropical cyclone intensification and rapid intensification, but the three-dimensional structures of the sub-grid-scale (SGS) eddy have not been revealed due to the lack of observational data. In this study, two numerical simulations of Super Typhoon Rammasun (2014) were conducted with the Advanced Weather Research and Forecast (WRF) model by incorporating the large-eddy simulation (LES) technique, in which the enhanced eyewall convection and the process of rapid intensification are captured. Consistent with previous observational studies, the strong turbulent kinetic energy (TKE) is found throughout the whole eyewall inside of the radius of maximum wind in both experiments. The simulations indicate that the strong TKE is associated with horizontal rolls with the horizontal extent of 2–4 km, which are aligned azimuthally in the intense eyewall convection. It is indicated that the three-dimensional structures of the SGS eddy can be simulated with the vertical grid spacing of ∼100 m when the horizontal grid spacing is 74 m. It is suggested that there is considerable turbulence associated with azimuthally-aligned horizontal rolls in the mid-level eyewall of tropical cyclone.


2022 ◽  
Author(s):  
Noel G. Brizuela ◽  
T. M. Shaun Johnston ◽  
Matthew H Alford ◽  
Olivier Asselin ◽  
Daniel L. Rudnick ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Kai Wang ◽  
Yun Guo ◽  
Xu Wang

The study of typhoon wind profiles, especially offshore typhoon wind profiles, has been constrained by the scarcity of observational data. In this study, the Doppler wind lidar was used to observe the offshore wind profiles during Super Typhoon Mangkhut and onshore wind profiles during Super Typhoon Lekima. Four wind profile models, including the power law, logarithmic law, Deaves–Harris (D-H), and Gryning, were selected in the height range of 0–300 m to fit the wind profile. The variations in the power exponent with the mean wind speed and roughness length were also analyzed. The results showed that the wind profiles fitted by the four models were generally in good agreement with the observed wind profiles with correlation coefficients greater than 0.98 and root mean square deviations less than 0.5 m s−1. For the offshore case, the fitting degree of all wind profile models improved with increasing mean wind speed. Specifically, the D-H model had the highest fitting degree when the horizontal mean wind speed at 40 m was in the range of 8–25 m s−1, while the log-law model had the highest fitting degree when the wind speed exceeded 30 m s−1. For the onshore case, the fitting degree of the four wind profile models deteriorated with increasing mean wind speed, and the log-law model had the highest fitting degree in all wind speed intervals from 8 to 30 m s−1. For both offshore and onshore cases, the power exponent was less affected by mean wind speed and increased with increasing roughness length, and the logarithmic empirical model proposed in this study could well characterize the relationship between the power exponent and roughness length.


2021 ◽  
Vol 264 ◽  
pp. 105822
Author(s):  
Guangyao Wang ◽  
Haimao Lan ◽  
Zhongfang Liu

2021 ◽  
Vol 10 (11) ◽  
pp. 744
Author(s):  
Shi Shen ◽  
Junwang Huang ◽  
Changxiu Cheng ◽  
Ting Zhang ◽  
Nikita Murzintcev ◽  
...  

Social media has been a vital channel for communicating and broadcasting disaster-related information. However, the global spatiotemporal patterns of social media users’ activities, interactions, and connections after a natural disaster remain unclear. Hence, we integrated geocoding, geovisualization, and complex network methods to illustrate and analyze the online social network’s spatiotemporal evolution. Taking the super typhoon Haiyan as a case, we constructed a retweeting network and mapped this network according to the tweets’ location information. The results show that (1) the distribution of in-degree and out-degree follow power-law and retweeting networks are scale-free. (2) A local catastrophe could attract significant global interest but with strong geographical heterogeneity. The super typhoon Haiyan especially attracted attention from the United States, Europe, and Australia, in which users are more active in posting and forwarding disaster-related tweets than other regions (except the Philippines). (3) The users’ interactions and connections are also significantly different between countries and regions. Connections and interactions between the Philippines and the United States, Europe, and Australia were much closer than in other regions. Therefore, the agencies and platforms should also pay attention to other countries and regions outside the disaster area to provide more valuable information for the local people.


Sign in / Sign up

Export Citation Format

Share Document