scholarly journals A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau

Nature ◽  
2019 ◽  
Vol 569 (7756) ◽  
pp. 409-412 ◽  
Author(s):  
Fahu Chen ◽  
Frido Welker ◽  
Chuan-Chou Shen ◽  
Shara E. Bailey ◽  
Inga Bergmann ◽  
...  
Science ◽  
2020 ◽  
Vol 370 (6516) ◽  
pp. 584-587
Author(s):  
Dongju Zhang ◽  
Huan Xia ◽  
Fahu Chen ◽  
Bo Li ◽  
Viviane Slon ◽  
...  

A late Middle Pleistocene mandible from Baishiya Karst Cave (BKC) on the Tibetan Plateau has been inferred to be from a Denisovan, an Asian hominin related to Neanderthals, on the basis of an amino acid substitution in its collagen. Here we describe the stratigraphy, chronology, and mitochondrial DNA extracted from the sediments in BKC. We recover Denisovan mitochondrial DNA from sediments deposited ~100 thousand and ~60 thousand years ago (ka) and possibly as recently as ~45 ka. The long-term occupation of BKC by Denisovans suggests that they may have adapted to life at high altitudes and may have contributed such adaptations to modern humans on the Tibetan Plateau.


Author(s):  
Fahu Chen ◽  
Frido Welker ◽  
Chuan-Chou Shen ◽  
Shara E. Bailey ◽  
Inga Bergmann ◽  
...  

2000 ◽  
Vol 54 (3) ◽  
pp. 309-320 ◽  
Author(s):  
Jimin Sun ◽  
Tungsheng Liu

Uplift of the Tibetan Plateau is manifest not only in widespread denudation, but also by an increased deposition rate of sediment, near or far from the exhumed regions. Our results indicate that the mass accumulation rate (MAR) of eolian dust increased between ∼1.1 and ∼0.9 myr ago. We associate this increase in MAR and median grain size with uplift of the Tibetan Plateau and its adjacent regions during this period. This Middle Pleistocene uplift can also be evidenced by the age of volcanism in the marginal region, the existence of thick conglomerate deposits surrounding the uplifted plateau, and the increased sedimentation rate of lacustrine deposits in the Qaidam Basin (northeastern Tibetan Plateau) between ∼1.1 and ∼0.9 myr ago. The correlation between the loess and marine records indicates that after ∼0.9 myr ago, these two records correlate well. This good correlation probably suggest that the Middle Pleistocene upheaval event not only brought the plateau into the cryosphere, but also enhanced the coupling of regional-scale Chinese loess transportation and deposition to the global ice volume variations through its effects on glacial grinding, rock denudation, and east Asian monsoonal circulation.


2021 ◽  
Vol 13 (13) ◽  
pp. 7065
Author(s):  
Guangliang Hou ◽  
Weimiao Dong ◽  
Linhai Cai ◽  
Qingbo Wang ◽  
Menghan Qiu

The timing and motivation of prehistoric human expansion into the hinterland of the Tibetan Plateau (TP) is a widely debated scientific issue. Recent archaeological studies have brought forward predictions of the earliest human occupation of the TP to the late–Middle Pleistocene. However, massive human occupation of the TP did not appear until the termination of the Last Glacial Maximum (LGM). The spatio-temporal distribution of prehistoric hunter-gatherers on the TP varies significantly before the permanent occupation after 3600 BP (before present). Here, we report on environmental-archaeological evidence from the Canxionggashuo (CXGS) site in Yushu Prefecture, which provides information that is key to understanding the dynamics of post-LGM human occupation on the TP. Radiocarbon dating has revealed two occupation periods of the CXGS site at 8600–7100 cal (calibrated years) BP and 2400–2100 cal BP. The charcoal concentration in cultural layers correlates well with paleo–human activities. Hunter-gatherers expanded westwards from the northeastern margin of the TP to the hinterland of the TP during the warming period of the early–middle Holocene (~11,500–6000 BP). However, these groups retreated during the middle–late Holocene (~6000–3600 BP) under a cooling-drying climate. Prehistoric humans finally occupied the hinterland of the TP permanently after 3600 BP, with an enhanced cold-adaptive lifestyle, although the climate was still deteriorating.


Sign in / Sign up

Export Citation Format

Share Document