Optogenetic silencing at synaptic terminals

2021 ◽  
Vol 18 (7) ◽  
pp. 712-712
Author(s):  
Nina Vogt
Keyword(s):  
2002 ◽  
Vol 277 (37) ◽  
pp. 34651-34654
Author(s):  
Cátia S. Ribeiro ◽  
Katia Carneiro ◽  
Christopher A. Ross ◽  
João R.L. Menezes ◽  
Simone Engelender

Author(s):  
Frank Schmitz ◽  
Sivaraman Natarajan ◽  
Jagadeesh K. Venkatesan ◽  
Silke Wahl ◽  
Karin Schwarz ◽  
...  

1993 ◽  
Vol 90 (23) ◽  
pp. 11411-11415 ◽  
Author(s):  
G A Clark ◽  
E R Kandel

Long-term synaptic facilitation at the connections of Aplysia sensory neurons onto their target cells involves alterations in gene expression. How then are the relevant cellular signals for the induction and expression of long-term synaptic changes conveyed between the nucleus and remote synaptic terminals? We have explored this question using a set of remote, peripheral terminals of siphon sensory cells, which are approximately 3 cm from the sensory cell body in the abdominal ganglion. We found that these remote synapses, like the proximal synapses previously studied in dissociated cell culture, can exhibit long-term facilitation 24 hr after cell-wide serotonin application. Furthermore, serotonin applications restricted to the remote synaptic terminals nevertheless produced long-term facilitation, indicating that signals generated in synaptic regions can trigger the long-term process, perhaps via retrograde signals to the nucleus to modify gene expression, followed by anterograde signals back to the terminal. Serotonin applications restricted to the cell body and proximal synapses of the sensory neuron also produced long-term facilitation at remote synapses, although to a lesser extent, suggesting that long-term facilitation is expressed cell-wide, but that superimposed on this cell-wide facilitation there appears to be a component that is synapse-specific.


Sign in / Sign up

Export Citation Format

Share Document