scholarly journals Neural correlates of perceptual separation-induced enhancement of prepulse inhibition of startle in humans

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ming Lei ◽  
Changxin Zhang ◽  
Liang Li
2021 ◽  
Vol 15 ◽  
Author(s):  
Ming Lei ◽  
Yu Ding ◽  
Qingxin Meng

Prepulse inhibition (PPI) refers to the suppression of the startle reflex when the intense startling stimulus is shortly (20–500 ms) preceded by a weak non-startling stimulus (prepulse). Although the main neural correlates of PPI lie in the brainstem, previous research has revealed that PPI can be top-down modulated by attention. However, in the previous attend-to-prepulse PPI paradigm, only continuous prepulse but not discrete prepulse (20 ms) could elicit attentional modulation of PPI. Also, the relationship between the attentional enhancement of PPI and the changes in early cortical representations of prepulse signals is unclear. This study develops a novel attend-to-prepulse PPI task, when the discrete prepulse is set at 150 ms at a lead interval of 270 ms, and reveals that the PPI with attended prepulse is larger than the PPI with ignored prepulse. In addition, the early cortical representations (N1/P2 complex) of the prepulse show dissociation between the attended and ignored prepulse. N1 component is enhanced by directed attention, and the attentional increase of the N1 component is positively correlated with the attentional enhancement of PPI, whereas the P2 component is not affected by attentional modulation. Thus, directed attention to the prepulse can enhance both PPI and the early cortical representation of the prepulse signal (N1).


2003 ◽  
Vol 122 (2) ◽  
pp. 99-113 ◽  
Author(s):  
Veena Kumari ◽  
Jeffrey A Gray ◽  
Mark A Geyer ◽  
Dominic ffytche ◽  
William Soni ◽  
...  

2019 ◽  
Vol 62 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Jessica M. Wess ◽  
Joshua G. W. Bernstein

PurposeFor listeners with single-sided deafness, a cochlear implant (CI) can improve speech understanding by giving the listener access to the ear with the better target-to-masker ratio (TMR; head shadow) or by providing interaural difference cues to facilitate the perceptual separation of concurrent talkers (squelch). CI simulations presented to listeners with normal hearing examined how these benefits could be affected by interaural differences in loudness growth in a speech-on-speech masking task.MethodExperiment 1 examined a target–masker spatial configuration where the vocoded ear had a poorer TMR than the nonvocoded ear. Experiment 2 examined the reverse configuration. Generic head-related transfer functions simulated free-field listening. Compression or expansion was applied independently to each vocoder channel (power-law exponents: 0.25, 0.5, 1, 1.5, or 2).ResultsCompression reduced the benefit provided by the vocoder ear in both experiments. There was some evidence that expansion increased squelch in Experiment 1 but reduced the benefit in Experiment 2 where the vocoder ear provided a combination of head-shadow and squelch benefits.ConclusionsThe effects of compression and expansion are interpreted in terms of envelope distortion and changes in the vocoded-ear TMR (for head shadow) or changes in perceived target–masker spatial separation (for squelch). The compression parameter is a candidate for clinical optimization to improve single-sided deafness CI outcomes.


2016 ◽  
Vol 21 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Sofia Ribeirinho Leite ◽  
Cory David Barker ◽  
Marc G. Lucas

2000 ◽  
Author(s):  
Janel L. Baer ◽  
Sara M. Damrow ◽  
Richard A. Deyo ◽  
Richard E. Musty
Keyword(s):  

2012 ◽  
Author(s):  
Nicole Scott ◽  
Apostolos Georgopoulos ◽  
Maria Sera

2007 ◽  
Author(s):  
Marco Sperduti ◽  
Ralf Veit ◽  
Andrea Caria ◽  
Paolo Belardinelli ◽  
Niels Birbaumer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document