scholarly journals Ubiquitin Proteasome pathway proteins as potential drug targets in parasite Trypanosoma cruzi

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ishita Gupta ◽  
Suruchi Aggarwal ◽  
Kanika Singh ◽  
Amit Yadav ◽  
Sameena Khan
2014 ◽  
Vol 15 (3) ◽  
pp. 255-271 ◽  
Author(s):  
Rubem Sadok Menna-Barreto ◽  
Kele Belloze ◽  
Jonas Perales ◽  
Floriano Silva-Jr

2012 ◽  
Vol 2 (2) ◽  
Author(s):  
Rubem Figueiredo Sadok Menna-Barreto ◽  
Daniela Gois Beghini ◽  
André Teixeira da Silva Ferreira ◽  
Vivian Corrêa de Almeida ◽  
Marcelle Almeida Caminha ◽  
...  

2011 ◽  
Vol 2 (4) ◽  
pp. 259-287 ◽  
Author(s):  
Sara M. Schmitt ◽  
Lillian Lu ◽  
Q. Ping Dou

The importance of the ubiquitin-proteasome pathway to cellular function has brought it to the forefront in the search for new anticancer therapies. The ubiquitin-proteasome pathway has proven promising in targeting various human cancers. The approval of the proteasome inhibitor bortezomib for clinical treatment of relapsed/refractory multiple myeloma and mantle cell lymphoma has validated the ubiquitin-proteasome as a rational target. Bortezomib has shown positive results in clinical use but some toxicity and side effects, as well as resistance, have been observed, indicating that further development of novel, less toxic drugs is necessary. Because less toxic drugs are necessary and drug development can be expensive and time-consuming, using existing drugs that can target the ubiquitin-proteasome pathway in new applications, such as cancer therapy, may be effective in expediting the regulatory process and bringing new drugs to the clinic. Toward this goal, previously approved drugs, such as disulfiram, as well as natural compounds found in common foods, such as green tea polyphenol (-)-EGCG and the flavonoid apigenin, have been investigated for their possible proteasome inhibitory and cell death inducing abilities. These compounds proved quite promising in preclinical studies and have now moved into clinical trials, with preliminary results that are encouraging. In addition to targeting the catalytic activity of the proteasome pathway, upstream regulators, such as the 19S regulatory cap, as well as E1, E2, and E3, are now being investigated as potential drug targets. This review outlines the development of novel proteasome inhibitors from preclinical to clinical studies, highlighting their abilities to inhibit the tumor proteasome and induce apoptosis in several human cancers.


2006 ◽  
Vol 401 (2) ◽  
Author(s):  
Neil D. Rawlings

Eukaryote homologues of carboxypeptidases Taq have been discovered by Niemirowicz et al. in the protozoan Trypanosoma cruzi, the causative agent of Chagas' disease. This is surprising, because the peptidase family was thought to be restricted to bacteria and archaea. In this issue of the Biochemical Journal, the authors propose that the Trypanosoma carboxypeptidases are potential drug targets for treatment of the disease. The authors also propose that the presence of the genes in the zooflagellates can be explained by a horizontal transfer of an ancestral gene from a prokaryote. Because peptidases are popular drug targets, identifying parasite or pathogen peptidases that have no homologues in their hosts would be a method to select the most promising targets. To understand how unusual this phyletic distribution is among the 183 families of peptidases, several other examples of horizontal transfers are presented, as well as some unusual losses of peptidase genes.


2011 ◽  
Vol 2 (4) ◽  
pp. 259
Author(s):  
Sara M. Schmitt ◽  
Lillian Lu ◽  
Q. Ping Dou

The importance of the ubiquitin-proteasome pathway to cellular function has brought it to the forefront in the search for new anticancer therapies. The ubiquitin-proteasome pathway has proven promising in targeting various human cancers. The approval of the proteasome inhibitor bortezomib for clinical treatment of relapsed/refractory multiple myeloma and mantle cell lymphoma has validated the ubiquitin-proteasome as a rational target. Bortezomib has shown positive results in clinical use but some toxicity and side effects, as well as resistance, have been observed, indicating that further development of novel, less toxic drugs is necessary. Because less toxic drugs are necessary and drug development can be expensive and time-consuming, using existing drugs that can target the ubiquitin-proteasome pathway in new applications, such as cancer therapy, may be effective in expediting the regulatory process and bringing new drugs to the clinic. Toward this goal, previously approved drugs, such as disulfiram, as well as natural compounds found in common foods, such as green tea polyphenol (-)-EGCG and the flavonoid apigenin, have been investigated for their possible proteasome inhibitory and cell death inducing abilities. These compounds proved quite promising in preclinical studies and have now moved into clinical trials, with preliminary results that are encouraging. In addition to targeting the catalytic activity of the proteasome pathway, upstream regulators, such as the 19S regulatory cap, as well as E1, E2, and E3, are now being investigated as potential drug targets. This review outlines the development of novel proteasome inhibitors from preclinical to clinical studies, highlighting their abilities to inhibit the tumor proteasome and induce apoptosis in several human cancers.


Sign in / Sign up

Export Citation Format

Share Document