tyrosine phosphorylation
Recently Published Documents


TOTAL DOCUMENTS

5411
(FIVE YEARS 236)

H-INDEX

177
(FIVE YEARS 8)

2022 ◽  
Vol 15 ◽  
Author(s):  
Babykumari P. Chitramuthu ◽  
Víctor R. Campos-García ◽  
Andrew Bateman

Progranulin (PGRN) is critical in supporting a healthy CNS. Its haploinsufficiency results in frontotemporal dementia, while in experimental models of age-related neurodegenerative diseases, the targeted expression of PGRN greatly slows the onset of disease phenotypes. Nevertheless, much remains unclear about how PGRN affects its target cells. In previous studies we found that PGRN showed a remarkable ability to support the survival of NSC-34 motor neuron cells under conditions that would otherwise lead to their apoptosis. Here we used the same model to investigate other phenotypes of PGRN expression in NSC-34 cells. PGRN significantly influenced morphological differentiation, resulting in cells with enlarged cell bodies and extended projections. At a molecular level this correlated with pathways associated with the cytoskeleton and synaptic differentiation. Depletion of PGRN led to increased expression of several neurotrophic receptors, which may represent a homeostatic mechanism to compensate for loss of neurotrophic support from PGRN. The exception was RET, a neurotrophic tyrosine receptor kinase, which, when PGRN levels are high, shows increased expression and enhanced tyrosine phosphorylation. Other receptor tyrosine kinases also showed higher tyrosine phosphorylation when PGRN was elevated, suggesting a generalized enhancement of receptor activity. PGRN was found to bind to multiple plasma membrane proteins, including RET, as well as proteins in the ER/Golgi apparatus/lysosome pathway. Understanding how these various pathways contribute to PGRN action may provide routes toward improving neuroprotective therapies.


Author(s):  
Ju-Mi Hwang ◽  
Jeong-Won Bae ◽  
Eun-Ju Jung ◽  
Woo-Jin Lee ◽  
Woo-Sung Kwon

Although novaluron is an insect growth regulator with a low mammalian acute toxicity and a low risk to the environment and nontarget organisms, toxic effects of novaluron have been reported. However, no studies have yet evaluated the effect of novaluron on reproduction. Therefore, we examined the effects of novaluron on sperm functions. The spermatozoa of ICR mice were incubated with various concentrations of novaluron to induce capacitation. Then, sperm motion parameters and capacitation status were evaluated using CASA program and H33258/chlortetracycline staining. In addition, PKA activity and tyrosine phosphorylation were evaluated by Western blotting. After exposure, various sperm motion parameters were significantly decreased in a dose-dependent manner. The acrosome reaction was also significantly decreased in the high concentration groups. Sperm viability was significantly reduced at the highest concentration. In addition, PKA activity and tyrosine phosphorylation were also significantly altered. Thus, novaluron affects sperm viability, sperm motility, and motion kinematics during capacitation. Furthermore, it may promote the reduction in acrosome reactions. The physiological suppression of sperm function may depend on abnormal tyrosine phosphorylation via the alteration of PKA activity. Therefore, we suggest that it is necessary to consider reproductive toxicity when using novaluron as a pesticide.


2021 ◽  
Author(s):  
Wei Niu ◽  
Jiantao Guo ◽  
Xinyuan He ◽  
Bin Ma ◽  
Yan Chen

Protein tyrosine phosphorylation plays a critical role in signal transduction and the regulation of many cellular processes. It is of great significance to understand the underlying regulatory mechanism of particular tyrosine phosphorylation events. Here we report the genetic incorporation of a phosphotyrosine (pTyr) analog, p-carboxymethyl-L-phenylalanine (CMF), into proteins in mammalian cells. This nonhydrolyzable pTyr analog can facilitate biological studies by removing complications caused by the dynamic interconversion between the phosphorylated and non-phosphorylated isoforms of a protein. The developed methodology was demonstrated by using the human signal transducer and activator of transcription-1 (STAT1) as a model protein for homogeneous and defined incorporation of CMF. This tool will greatly enhance our capability to study protein tyrosine phosphorylation-associated biomolecular and cellular events, and enhance biomedical research that target protein tyrosine phosphorylation, which will have a broad impact to both fundamental studies and practical applications.


Author(s):  
Yuting Xiong ◽  
Minmin Li ◽  
Wenqi Lu ◽  
Dongdong Wang ◽  
Mingliang Tang ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1213
Author(s):  
Patricia Peris-Frau ◽  
Irene Sánchez-Ajofrín ◽  
Alicia Martín Maestro ◽  
Carolina Maside ◽  
Daniela Alejandra Medina-Chávez ◽  
...  

The heterogeneous nature of ejaculates highlights the relevance of studying the behavior of different sperm subpopulations. Changes in sperm motility and the increase in tyrosine phosphorylation are key events that usually occur during capacitation and can be modified by the cryopreservation process. However, the relationship between both events remains poorly defined throughout capacitation in the different sperm subpopulations. Fresh and frozen-thawed spermatozoa were incubated in capacitating (CAP) and non-capacitating (NC) media up to 240 min. Sperm kinematics, tyrosine phosphorylation and mitochondrial activity were measured by the CASA system and imaging flow cytometry. Four motile sperm subpopulations (SP) were identified in fresh and frozen-thawed ram semen after the cluster analysis. Incubation under CAP conditions over time led to greater changes in the percentage of spermatozoa included in each subpopulation compared to NC conditions, being different between fresh and frozen-thawed spermatozoa. The SP1, characterized by slow spermatozoa, progressively increased after 15 min in frozen-thawed samples incubated in both media but not in fresh ones. The SP4, characterized by fast and non-linear spermatozoa, showed a marked increase during CAP, but not under NC conditions, occurring more rapidly in frozen-thawed spermatozoa. This subpopulation (SP4) was also the only one positively and strongly correlated with mitochondrial activity and all phosphorylated sperm regions during capacitation, either in fresh or frozen-thawed samples. Our results indicated that in vitro capacitation induced significant changes in the distribution of motile sperm subpopulations, being affected by cryopreservation. Notwithstanding, the subpopulation which probably represents hyperactivated-like spermatozoa (SP4) also increased in frozen-thawed samples, occurring faster and simultaneously to the increment of mitochondrial activity and tyrosine phosphorylation of different sperm regions.


2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Moonsup Lee ◽  
Kunio Nagashima ◽  
Jaeho Yoon ◽  
Jian Sun ◽  
Ziqiu Wang ◽  
...  

Proper cilia formation in multiciliated cells (MCCs) is necessary for appropriate embryonic development and homeostasis. Multicilia share many structural characteristics with monocilia and primary cilia, but there are still significant gaps in our understanding of the regulation of multiciliogenesis. Using the Xenopus embryo, we show that CEP97, which is known as a negative regulator of primary cilia formation, interacts with dual specificity tyrosine phosphorylation regulated kinase 1A (Dyrk1a) to modulate multiciliogenesis. We show that Dyrk1a phosphorylates CEP97, which in turn promotes the recruitment of Polo-like kinase 1 (Plk1), which is a critical regulator of MCC maturation that functions to enhance centriole disengagement in cooperation with the enzyme Separase. Knockdown of either CEP97 or Dyrk1a disrupts cilia formation and centriole disengagement in MCCs, but this defect is rescued by overexpression of Separase. Thus, our study reveals that Dyrk1a and CEP97 coordinate with Plk1 to promote Separase function to properly form multicilia in vertebrate MCCs.


Author(s):  
Clara I. Marín-Briggiler ◽  
Guillermina M. Luque ◽  
María G. Gervasi ◽  
Natalia Oscoz-Susino ◽  
Jessica M. Sierra ◽  
...  

To acquire fertilization competence, mammalian sperm must undergo several biochemical and physiological modifications known as capacitation. Despite its relevance, the metabolic pathways that regulate the capacitation-related events, including the development of hyperactivated motility, are still poorly described. Previous studies from our group have shown that temporary energy restriction in mouse sperm enhanced hyperactivation, in vitro fertilization, early embryo development and pregnancy rates after embryo transfer, and it improved intracytoplasmic sperm injection results in the bovine model. However, the effects of starvation and energy recovery protocols on human sperm function have not yet been established. In the present work, human sperm were incubated for different periods of time in medium containing glucose, pyruvate and lactate (NUTR) or devoid of nutrients for the starving condition (STRV). Sperm maintained in STRV displayed reduced percentages of motility and kinematic parameters compared to cells incubated in NUTR medium. Moreover, they did not undergo hyperactivation and showed reduced levels of ATP, cAMP and protein tyrosine phosphorylation. Similar to our results with mouse sperm, starvation induced increased intracellular Ca2+ concentrations. Starved human sperm were capable to continue moving for more than 27 h, but the incubation with a mitochondrial uncoupler or inhibitors of oxidative phosphorylation led to a complete motility loss. When exogenous nutrients were added back (sperm energy recovery (SER) treatment), hyperactivated motility was rescued and there was a rise in sperm ATP and cAMP levels in 1 min, with a decrease in intracellular Ca2+ concentration and no changes in sperm protein tyrosine phosphorylation. The finding that human sperm can remain motile for several hours under starvation due to mitochondrial use of endogenous metabolites implies that other metabolic pathways may play a role in sperm energy production. In addition, full recovery of motility and other capacitation parameters of human sperm after SER suggests that this treatment might be used to modulate human sperm fertilizing ability in vitro.


2021 ◽  
Vol 22 (21) ◽  
pp. 12008
Author(s):  
Wan-Ju Wu ◽  
Sue-Hong Wang ◽  
Chun-Chi Wu ◽  
Yi-An Su ◽  
Chin-Yin Chiang ◽  
...  

T helper (Th)2 cytokines such as interleukin (IL)-4 and IL-13 control immune function by acting on leukocytes. They also regulate multiple responses in non-hematopoietic cells. During pregnancy, IL-4 and IL-13 facilitate alveologenesis of mammary glands. This particular morphogenesis generates alveoli from existing ducts and requires substantial cell proliferation. Using 3D cultures of primary mouse mammary epithelial cells, we demonstrate that IL-4 and IL-13 promote cell proliferation, leading to enlargement of mammary acini with partially filled lumens. The mitogenic effects of IL-4 and IL-13 are mediated by STAT6 as inhibition of STAT6 suppresses cell proliferation and improves lumen formation. In addition, IL-4 and IL-13 stimulate tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1). Prolonged treatment with these cytokines leads to increased IRS-1 abundance, which, in turn, amplifies IL-4- and IL-13-stimulated IRS-1 tyrosine phosphorylation. Through signaling crosstalk between IL-4/IL-13 and insulin, a hormone routinely included in mammary cultures, IRS-1 tyrosine phosphorylation is further enhanced. Lowering IRS-1 expression reduces cell proliferation, suggesting that IRS-1 is involved in IL-4- and IL-13-stimulated cell proliferation. Thus, a Th2-dominant cytokine milieu during pregnancy confers mammary gland development by promoting cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document