Human Cancers
Recently Published Documents


TOTAL DOCUMENTS

2554
(FIVE YEARS 1376)

H-INDEX

135
(FIVE YEARS 50)

2021 ◽  
Vol 144 ◽  
pp. 112262
Author(s):  
Lirui Dai ◽  
Zian Li ◽  
Yiran Tao ◽  
Wulong Liang ◽  
Weihua Hu ◽  
...  

2021 ◽  
Author(s):  
Yan-Hua Huang ◽  
Sun-Jun Yin ◽  
Yuan-Yuan Gong ◽  
Zhi-Ran Li ◽  
Qin Yang ◽  
...  

Aim: A comprehensive meta-analysis was carried out to evaluate the association between high PARP1 expression and clinical outcomes in diverse types of cancers. Materials & methods: The electronic databases for all articles about PARP1 expression and cancers were searched. Additionally, bioinformatics analysis was utilized to validate the results of the meta-analysis. Results: Fifty-two studies with a total of 7140 patients were included in the current meta-analysis. High PARP1 expression was found to be significantly associated with poor overall survival and recurrence in various cancers, which were further strengthened and complemented by the results of bioinformatic analysis. Furthermore, increased PAPR1 expression was also related to clinicopathological features. Conclusion: Our findings confirmed that PARP1 might be a promising biomarker for prognosis in human cancers.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shuai Yang ◽  
Bing Wang ◽  
Chang Liu ◽  
Qizun Wang ◽  
Ronghuan Wang ◽  
...  

Increasing studies have demonstrated that dysfunction of long noncoding RNAs (lncRNAs) plays critical roles in the development of human cancers. THAP9-AS1 has been reported to be dysregulated and associated with tumor progression in some cancers. However, the function and mechanism of THAP9-AS1 in osteosarcoma (OS) remain unclear. In the present study, we found that the expression of THAP9-AS1 was significantly upregulated in OS tissues and associated with the advanced stage of tumors and poor prognosis of patients. Blast comparison results showed that the SOCS3 promoter region and THAP9-AS1 had base complementary pairing binding sites. The interactions between THAP9-AS1, DNA methyltransferases (DNMTs), and SOCS3 were assessed by RIP and ChIP assays. The results of methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP) validated that THAP9-AS1 enhanced the methylation level of the SOCS3 promoter. The mRNA levels of SOCS3 in OS cells could be reversed by the demethylation agent 5-aza-2 ′ -deoxycytidine. The mRNA expression of SOCS3 was downregulated in OS tissues and negatively correlated with THAP9-AS1 expression in tumors. Moreover, the western blot and immunofluorescence (IF) assay data showed that THAP9-AS1 activated the JAK2/STAT3 signaling pathway by upregulating p-JAK2 and p-STAT3 and the nuclear translocation of p-STAT3. Functionally, ectopic expression of THAP9-AS1 promoted cell proliferation, migration, and invasion and inhibited apoptosis, and this phenomenon could be reversed by SOCS3. Introduction of the JAK/STAT inhibitor AG490 partially abolished the stimulative effect of THAP9-AS1 on cellular processes. In addition, THAP9-AS1 decreased oxidative stress by reducing reactive oxygen species (ROS) and enhancing the mitochondrial membrane potential of OS cells via the SOCS3/JAK2/STAT3 pathway. Stable overexpression of THAP9-AS1 contributed to tumor growth and metastasis in vivo. In total, our findings suggested that upregulation of THAP9-AS1 might recruit DNMTs to epigenetically inhibit SOCS3, thereby activating the JAK2/STAT3 signaling pathway and oncogenesis of OS. These results provide novel insights for the understanding of OS progression.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yunjing Zhang ◽  
Ying Wang ◽  
Xinwan Su ◽  
Ping Wang ◽  
Weiqiang Lin

Liquid biopsy includes non-invasive analysis of circulating tumor-derived substances. It is a novel, innovative cancer screening tool that overcomes the limitations of current invasive tissue examinations in precision oncology. Circular RNA (circRNA) is a recent, novel, and attractive liquid biomarker showing stability, abundance, and high specificity in various diseases, especially in human cancers. This review focused on the emerging potential of human circRNA in body fluids as the liquid biopsy biomarkers for cancers and the methods used to detect the circRNA expression and summarized the construction of circRNA biomarkers in body fluids for treating human cancers and their limitations before they become part of routine clinical medicine. Furthermore, the future opportunities and challenges of translating circRNAs in liquid biopsy into clinical practices were explored.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katja Steiger ◽  
Neil Gerard Quigley ◽  
Tanja Groll ◽  
Frauke Richter ◽  
Maximilian Alexander Zierke ◽  
...  

Abstract Background In the context of nuclear medicine and theranostics, integrin-related research and development was, for most of the time, focused predominantly on 'RGD peptides' and the subtype αvβ3-integrin. However, there are no less than 24 known integrins, and peptides without the RGD sequence as well as non-peptidic ligands play an equally important role as selective integrin ligands. On the other hand, multimerization is a well-established method to increase the avidity of binding structures, but multimeric radiopharmaceuticals have not made their way into clinics yet. In this review, we describe how these aspects have been interwoven in the framework of the German Research Foundation's multi-group interdisciplinary funding scheme CRC 824, yielding a series of potent PET imaging agents for selective imaging of various integrin subtypes. Results The gallium-68 chelator TRAP was utilized to elaborate symmetrical trimers of various peptidic and non-peptidic integrin ligands. Preclinical data suggested a high potential of the resulting Ga-68-tracers for PET-imaging of the integrins α5β1, αvβ8, αvβ6, and αvβ3. For the first three, we provide some additional immunohistochemistry data in human cancers, which suggest several future clinical applications. Finally, application of αvβ3- and αvβ6-integrin tracers in pancreatic carcinoma patients revealed that unlike αvβ3-targeted PET, αvβ6-integrin PET is not characterized by off-target uptake and thus, enables a substantially improved imaging of this type of cancer. Conclusions Novel radiopharmaceuticals targeting a number of different integrins, above all, αvβ6, have proven their clinical potential and will play an increasingly important role in future theranostics.


2021 ◽  
Author(s):  
Haixiang Qin ◽  
Yingqiang Lu ◽  
Lin Du ◽  
Jingyan Shi ◽  
Haoli Yin ◽  
...  

Abstract Background: Emerging evidence suggests that LMNB1 is involved in the development of multiple cancer types. However, there is no study reporting the potential role of LMNB1 in a systematic pan-cancer manner.Methods: The gene expression level and potential oncogenic roles of LMNB1 in The Cancer Genome Atlas (TCGA) database were analyzed with Tumor Immune Estimation Resource version 2 (TIMER2.0), Gene Expression Profiling Interactive Analysis version 2 (GEPIA2), UALCAN and Sangerbox tools. Pathway enrichment analysis was carried out to explore the possible mechanism of LMNB1 on tumorigenesis and tumor progression. The therapeutic effects of LMNB1 knockdown combined with PARP inhibition on human cancers were further investigated in vitro. Results: LMNB1 upregulation is generally observed in the tumor tissues of most TCGA cancer types, and is verified in kidney renal clear cell carcinoma using clinical specimens of our institute. High level of LMNB1 expression usually predicts poor overall survival and disease free survival for patients with tumors. Mechanically, LMNB1 level is positively correlated with CD4+ Th2 cell infiltration and DNA homologous recombination repair gene expression. In vitro experiments reveal that targeting LMNB1 has a synergistic effect on prostate cancer with PARP inhibitor treatment. Conclusions: LMNB1 is a biomarker of CD4+ Th2 cell infiltration and DNA homologous recombination repair in human cancers. Blockage of LMNB1 combined with PARP inhibitor treatment could be a promising therapeutic strategy for patients with cancers.


2021 ◽  
Author(s):  
Fulai Zhao ◽  
Junli Chang ◽  
Wenyi Wang ◽  
Xingyuan Sun ◽  
Xiaoping Ma ◽  
...  

Abstract Increasing studies have revealed significant associations between TOP2A with oncogenesis and prognosis of human cancers; however, pan-cancer analysis has not been reported. Here, we explored the potential carcinogenic function, the association with clinical outcomes of TOP2A in 33 different human cancers. The results showed that TOP2A was amplified in 32 investigated cancers; TOP2A expression was significantly associated with metastasis of six different cancers, and significantly associated with the survivals of patients in ten different cancers; TOP2A encoded protein was obviously upregulated in five available cancers; phosphorylated TOP2A protein at S1106 was significantly upregulated in all six available cancers. Moreover, TOP2A expression was found to be associated with the cancer-associated immune cell infiltration, including fibroblasts, Tregs and macrophages. In addition, Kyoto encyclopedia of genes and genomes (KEGG) pathway and Gene Ontology (GO) enrichment analyses revealed a most significant association between TOP2A with Wnt signaling pathway, and DNA conformation change. This work provides a comprehensive knowledge of TOP2A in different cancers, including carcinogenic function, prognostic values for metastasis and clinical outcomes.


2021 ◽  
Author(s):  
Gennady V Ponomarev ◽  
Bulat Fatykhov ◽  
Vladimir A Nazarov ◽  
Ruslan Abasov ◽  
Evgeny Shvarov ◽  
...  

While somatic mutations are known to be enriched in genome regions with non-canonical DNA secondary structure, the impact of particular mutagens still needs to be elucidated. Here, we demonstrate that in human cancers, the APOBEC mutagenesis is not enriched in direct repeats, mirror repeats, short tandem repeats, and G-quadruplexes, and even decreased below its level in B-DNA for cancer samples with very high APOBEC activity. In contrast, we observe that the APOBEC-induced mutational density is positively associated with APOBEC activity in inverted repeats (cruciform structures), where the impact of cytosine at the 3'-end of the hairpin loop is substantial. Surprisingly, the APOBEC-signature mutation density per TC motif in the single-stranded DNA of a G-quadruplex (G4) is lower than in the four-stranded part of G4 and in B-DNA. The APOBEC mutagenesis, as well as the UV-mutagenesis in melanoma samples are absent in Z-DNA regions, due to depletion of their mutational signature motifs.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2723
Author(s):  
Greisha L. Ortiz-Hernandez ◽  
Evelyn S. Sanchez-Hernandez ◽  
Pedro T. Ochoa ◽  
Catherine C. Elix ◽  
Hossam R. Alkashgari ◽  
...  

Patients with prostate cancer (PCa) receiving docetaxel chemotherapy invariably develop chemoresistance. The transcription co-activator lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 and PSIP1, is upregulated in several human cancers, including PCa and promotes resistance to docetaxel and other drugs. The C-terminal region of LEDGF/p75 contains an integrase binding domain (IBD) that tethers nuclear proteins, including the HIV-1 integrase and transcription factors, to active chromatin to promote viral integration and transcription of cellular survival genes. Here, we investigated the contribution of the LEDGF/p75 IBD interactome to PCa chemoresistance. Quantitative immunoblotting revealed that LEDGF/p75 and its IBD-interacting partners are endogenously upregulated in docetaxel-resistant PCa cell lines compared to docetaxel-sensitive parental cells. Using specific human autoantibodies, we co-immunoprecipitated LEDGF/p75 with its endogenous IBD-interacting partners JPO2, menin, MLL, IWS1, ASK1, and PogZ, as well as transcription factors c-MYC and HRP2, in docetaxel-resistant cells, and confirmed their nuclear co-localization by confocal microscopy. Depletion of LEDGF/p75 and selected interacting partners robustly decreased the survival, clonogenicity, and tumorsphere formation capacity of docetaxel-resistant cells. These results implicate the LEDGF/p75 IBD interactome in PCa chemoresistance and could lead to novel therapeutic strategies targeting this protein complex for the treatment of docetaxel-resistant tumors.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yi Yi ◽  
Min Wu ◽  
Hong Zeng ◽  
Weijie Hu ◽  
Chongru Zhao ◽  
...  

Breast cancer (BC) is the most frequent malignancy and is ranking the leading cause of cancer-related death among women worldwide. At present, BC is still an intricate challenge confronted with high invasion, metastasis, drug resistance, and recurrence rate. Exosomes are membrane-enclosed extracellular vesicles with the lipid bilayer and recently have been confirmed as significant mediators of tumor cells to communicate with surrounding cells in the tumor microenvironment. As very important orchestrators, non-coding RNAs (ncRNAs) are aberrantly expressed and participate in regulating gene expression in multiple human cancers, while the most reported ncRNAs within exosomes in BC are microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Notably, ncRNAs containing exosomes are novel frontiers to shape malignant behaviors in recipient BC cells such as angiogenesis, immunoregulation, proliferation, and migration. It means that tumor-derived ncRNAs-containing exosomes are pluripotent carriers with intriguing and elaborate roles in BC progression via complex mechanisms. The ncRNAs in exosomes are usually excavated based on specific de-regulated expression verified by RNA sequencing, bioinformatic analyses, and PCR experiments. Here, this article will elucidate the recent existing research on the functions and mechanisms of tumor-derived exosomal miRNA, lncRNA, circRNA in BC, especially in BC cell proliferation, metastasis, immunoregulation, and drug resistance. Moreover, these tumor-derived exosomal ncRNAs that existed in blood samples are proved to be excellent diagnostic biomarkers for improving diagnosis and prognosis. The in-depth understanding of tumor-derived exosomal ncRNAs in BC will provide further insights for elucidating the BC oncogenesis and progress and exploring novel therapeutic strategies for combating BC.


Sign in / Sign up

Export Citation Format

Share Document