scholarly journals Framework, method and case study for the calculation of end of life for HWL and parameter sensitivity analysis

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rui Xiang ◽  
Jing-Cai Liu ◽  
Ya Xu ◽  
Yu-Qiang Liu ◽  
Chang-xin Nai ◽  
...  

Abstract Mass construction and operation of hazardous waste landfill infrastructure has greatly improved China’s waste management and environmental safety. However, the deterioration of engineering materials and the failure of landfill may lead to the release of untreated leachate rich in persistent toxic pollutants to the soil and shallow groundwater. Accordingly, we develop the framework and process model to predict landfill life by coupling the landfill hydrological performance model and material degradation model. We found that the decrease rate of the concentration of persistent pollutants in leachate was significantly slower than the deterioration rate of the landfill engineering materials. As a result, when the materials failed, the leachate with high concentrations of persistent pollutants continued to leak, resulting in the pollutants concentration in surrounding groundwater exceeding the acceptable concentration at around 385 a, which is the average life of a landfill. Further simulation indicated that hydrogeological conditions and the initial concentration of leachate will affect landfill lifespan. The correlation coefficients of concentration, the thickness of vadose zone and the thickness of aquifer are − 0.79, 0.99 and 0.72 respectively, so the thickness of vadose zone having the greatest impact on the life of a landfill. The results presented herein indicate hazardous waste landfill infrastructure reinvestment should be directed toward long-term monitoring and maintenance, waste second-disposal, and site restoration.

Author(s):  
Marija Meišutovic-Akhtarieva ◽  
Eglė Marčiulaitienė

The article analyses the existing research on odour emissions from the passive odour source – municipal landfill for non-hazardous waste. The current research has been carried out in the Vilnius county, at the Kazokiškės landfill for regional municipal waste. Odour emissions were analysed using samples from waste of different age and at different outdoor air temperatures. The investigation determined the concentration of odourous volatile organic compounds (VOCs) formed in the landfill (mg/m3) and odour emissions (OUe/m2s). The odour concentration varied between 0.02 OUe/m2s (from 9 year old waste at 11oC) to 1.29 OUe/m2s (from 0–3 year old waste at minus 1 oC and minus 10 oC). It was determined that as temperature decreases (within the range of 11 to minus 10 oC), the concentration of odour emissions increases. The coefficient of correlation between the temperature of environment and the concentration of odours emitted from the landfill stood at minus 0.91.


Sign in / Sign up

Export Citation Format

Share Document