hazardous waste landfill
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 4)

Author(s):  
Vasudevan* D. ◽  
Murugesan A.G.

The aim of the study was to evaluate the water quality impact caused due to the operations of common hazardous waste landfill facility (CHWLF) in Gummidipoondi industrial estate, Tiruvallur district, Tamilnadu, India. The watershed area of the hazardous waste landfill facility was delineated using Arc-GIS tools and prediction of ground water flow direction was carried out using three-dimensional ground water flow model using VISUAL MODFLOW software. The water quality analysis was performed in the upstream and downstream directions of the project site and the results showed that all the tested parameters were within the BIS 10500:2012 drinking water limits, except pH which showed slightly acidic characteristics in certain locations. The tested water samples mostly belonged to the Ca + Mg-HCO3’ type as classified using the multivariate analysis method using piper diagram. Co-relation between the water quality parameters were determined using statistical analysis of Pearson's correlation coefficient (r) values.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rui Xiang ◽  
Jing-Cai Liu ◽  
Ya Xu ◽  
Yu-Qiang Liu ◽  
Chang-xin Nai ◽  
...  

Abstract Mass construction and operation of hazardous waste landfill infrastructure has greatly improved China’s waste management and environmental safety. However, the deterioration of engineering materials and the failure of landfill may lead to the release of untreated leachate rich in persistent toxic pollutants to the soil and shallow groundwater. Accordingly, we develop the framework and process model to predict landfill life by coupling the landfill hydrological performance model and material degradation model. We found that the decrease rate of the concentration of persistent pollutants in leachate was significantly slower than the deterioration rate of the landfill engineering materials. As a result, when the materials failed, the leachate with high concentrations of persistent pollutants continued to leak, resulting in the pollutants concentration in surrounding groundwater exceeding the acceptable concentration at around 385 a, which is the average life of a landfill. Further simulation indicated that hydrogeological conditions and the initial concentration of leachate will affect landfill lifespan. The correlation coefficients of concentration, the thickness of vadose zone and the thickness of aquifer are − 0.79, 0.99 and 0.72 respectively, so the thickness of vadose zone having the greatest impact on the life of a landfill. The results presented herein indicate hazardous waste landfill infrastructure reinvestment should be directed toward long-term monitoring and maintenance, waste second-disposal, and site restoration.


2020 ◽  
Vol 11 (3) ◽  
pp. 281-298
Author(s):  
R Samadi Khadem ◽  
E* Fataei ◽  
P Joharchi ◽  
M.E Ramezani ◽  
◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 375
Author(s):  
Marco Ravina ◽  
Angelica Facelli ◽  
Mariachiara Zanetti

Landfills are sources of fugitive volatile organic carbon (VOC) emissions, including halocarbons. The objective of this study was to evaluate the contribution of halogenated VOCs to the health risks associated with the exposure of workers operating in landfills, gathering information on the role of endogenous/exogenous sources present in anthropized areas. A hazardous waste landfill located in Turin, Italy was used as a case study. Ambient concentrations of 10 pollutants (BTEX, styrene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, 1,2-dichloroethane, and 1,2-dichloropropane), measured in 10 points of the landfill area, were considered and analyzed. The data had a monthly frequency and covered two years. A cumulative health risk analysis was conducted by applying a Monte-Carlo method. The results showed that the contribution of 1,2-dichloroethane and 1,2-dichloropropane was 17.9% and 19.4% for the total risk and hazard index respectively. Benzene and ethylbenzene gave the highest contribution to the total risk (56.8% and 24.8%, respectively). In the second phase of the study, waste typologies that are possibly responsible for halocarbon emissions were investigated. Halocarbon concentration trends and waste disposal records were compared. Although further investigation is needed, some waste typologies were not excluded to contribute to halocarbon emissions, in particular sludge coming from wastewater treatment plants.


Sign in / Sign up

Export Citation Format

Share Document