scholarly journals Neuronal architecture of the second-order CO2 pathway in the brain of a noctuid moth

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
X. Chu ◽  
P. KC ◽  
E. Ian ◽  
P. Kvello ◽  
Y. Liu ◽  
...  

AbstractMany insects possess the ability to detect fine fluctuations in the environmental CO2 concentration. In herbivorous species, plant-emitted CO2, in combination with other sensory cues, affect many behaviors including foraging and oviposition. In contrast to the comprehensive knowledge obtained on the insect olfactory pathway in recent years, we still know little about the central CO2 system. By utilizing intracellular labeling and mass staining, we report the neuroanatomy of projection neurons connected with the CO2 sensitive antennal-lobe glomerulus, the labial pit organ glomerulus (LPOG), in the noctuid moth, Helicoverpa armigera. We identified 15 individual LPOG projection neurons passing along different tracts. Most of these uniglomerular neurons terminated in the lateral horn, a previously well-described target area of plant-odor projection neurons originating from the numerous ordinary antennal-lobe glomeruli. The other higher-order processing area for odor information, the calyces, on the other hand, was weakly innervated by the LPOG neurons. The overlapping LPOG terminals in the lateral horn, which is considered important for innate behavior in insects, suggests the biological importance of integrating the CO2 input with plant odor information while the weak innervation of the calyces indicates the insignificance of this ubiquitous cue for learning mechanisms.

2016 ◽  
Vol 115 (5) ◽  
pp. 2303-2316 ◽  
Author(s):  
Pavel Sanda ◽  
Tiffany Kee ◽  
Nitin Gupta ◽  
Mark Stopfer ◽  
Maxim Bazhenov

Olfactory processing takes place across multiple layers of neurons from the transduction of odorants in the periphery, to odor quality processing, learning, and decision making in higher olfactory structures. In insects, projection neurons (PNs) in the antennal lobe send odor information to the Kenyon cells (KCs) of the mushroom bodies and lateral horn neurons (LHNs). To examine the odor information content in different structures of the insect brain, antennal lobe, mushroom bodies and lateral horn, we designed a model of the olfactory network based on electrophysiological recordings made in vivo in the locust. We found that populations of all types (PNs, LHNs, and KCs) had lower odor classification error rates than individual cells of any given type. This improvement was quantitatively different from that observed using uniform populations of identical neurons compared with spatially structured population of neurons tuned to different odor features. This result, therefore, reflects an emergent network property. Odor classification improved with increasing stimulus duration: for similar odorants, KC and LHN ensembles reached optimal discrimination within the first 300–500 ms of the odor response. Performance improvement with time was much greater for a population of cells than for individual neurons. We conclude that, for PNs, LHNs, and KCs, ensemble responses are always much more informative than single-cell responses, despite the accumulation of noise along with odor information.


2011 ◽  
Vol 7 (2-4) ◽  
pp. 143-161
Author(s):  
Heather S. Mallory ◽  
Nicholas J. Gibson ◽  
Jon H. Hayashi ◽  
Alan J. Nighorn ◽  
Lynne A. Oland

Previously studied for its role in processing olfactory information in the antennal lobe, GABA also may shape development of the olfactory pathway, acting either through or on glial cells. Early in development, the dendrites of GABAergic neurons extend to the glial border that surrounds the nascent olfactory lobe neuropil. These neuropil glia express both GABAA and GABAB receptors, about half of the glia in acute cultures responded to GABA with small outward currents, and about a third responded with small transient increases in intracellular calcium. The neuronal classes that express GABA in vivo, the local interneurons and a subset of projection neurons, also do so in culture. Exposure to GABA in culture increased the size and complexity of local interneurons, but had no effect on glial morphology. The presence of glia alone did not affect neuronal morphology, but in the presence of both glia and GABA, the growth-enhancing effects of GABA on cultured antennal lobe neurons were eliminated. Contact between the glial cells and the neurons was not necessary. Operating in vivo, these antagonistic effects, one direct and one glia mediated, could help to sculpt the densely branched, tufted arbors that are characteristic of neurons innervating olfactory glomeruli.


2021 ◽  
Author(s):  
Aurel A Lazar ◽  
Tingkai Liu ◽  
Chung-Heng Yeh

In the early olfactory pathway of Drosophila, Olfactory Sensory Neurons (OSNs) multiplicatively encode the odorant identity and the concentration profile. Projection Neurons (PNs) responses in the Antennal Lobe (AL), in turn, exhibit strong transients at odorant onset/offset and stable steady-state behavior. What is the functional logic the of diverse set of Local Neurons (LNs) in the AL Addressing this question may shed light on the key characteristics of odor information processing in the AL, and odorant recognition and olfactory associative learning in the downstream neuropils of the early olfactory system. To address the computation performed by each LN type, we exhaustively evaluated all circuit configurations of the Antennal Lobe. We found that, across model parameterizations, presynaptic inhibition of the OSN-to-PN synapse is essential for odorant identity recovery in steady-state, while postsynaptic excitation and inhibition facilitate on-/off-set event detection. The onset and offset events indicate changing odorant identities, and together with the identity recovery in steady-state, suggest that the AL is an event-based odorant identity recovery processor.


2017 ◽  
Vol 98 ◽  
pp. 214-222 ◽  
Author(s):  
Takuya Nirazawa ◽  
Takeshi Fujii ◽  
Yoichi Seki ◽  
Shigehiro Namiki ◽  
Tomoki Kazawa ◽  
...  

2011 ◽  
Vol 71 ◽  
pp. e79
Author(s):  
Masashi Tabuchi ◽  
Takeshi Sakurai ◽  
Hidefumi Mitsuno ◽  
Shigehiro Namiki ◽  
Ryo Minegishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document