lateral horn
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 22)

H-INDEX

19
(FIVE YEARS 4)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Claire Eschbach ◽  
Akira Fushiki ◽  
Michael Winding ◽  
Bruno Afonso ◽  
Ingrid V Andrade ◽  
...  

Animal behavior is shaped both by evolution and by individual experience. Parallel brain pathways encode innate and learned valences of cues, but the way in which they are integrated during action-selection is not well understood. We used electron microscopy to comprehensively map with synaptic resolution all neurons downstream of all Mushroom Body output neurons (encoding learned valences) and characterized their patterns of interaction with Lateral Horn neurons (encoding innate valences) in Drosophila larva. The connectome revealed multiple convergence neuron types that receive convergent Mushroom Body and Lateral Horn inputs. A subset of these receives excitatory input from positive-valence MB and LH pathways and inhibitory input from negative-valence MB pathways. We confirmed functional connectivity from LH and MB pathways and behavioral roles of two of these neurons. These neurons encode integrated odor value and bidirectionally regulate turning. Based on this we speculate that learning could potentially skew the balance of excitation and inhibition onto these neurons and thereby modulate turning. Together, our study provides insights into the circuits that integrate learned and innate to modify behavior.


2021 ◽  
Author(s):  
Sudeshna Das Chakraborty ◽  
Hetan Chang ◽  
Bill S. Hansson ◽  
Silke Sachse

AbstractUnderstanding neuronal representations of odor-evoked activities and their progressive transformation from the sensory level to higher brain centers features one of the major aims in olfactory neuroscience. Here, we investigated how odor information is transformed and represented in higher-order neurons of the lateral horn, one of the higher olfactory centers implicated in determining innate behavior, using Drosophila melanogaster. We focused on a subset of third-order glutamatergic lateral horn neurons (LHNs) and characterized their odor coding properties in relation to their presynaptic partner neurons, the projection neurons (PNs) by two-photon functional imaging. We found that odors evoke reproducible, stereotypic and odor-specific response patterns in LHNs. Notably, odor-evoked responses in these neurons are valence-specific in a way that their response amplitude is positively correlated with innate odor preferences. We postulate that this valence-specific activity is the result of integrating inputs from multiple olfactory channels through second-order neurons. GRASP and micro-lesioning experiments provide evidence that glutamatergic LHNs obtain their major excitatory input from uniglomerular PNs, while they receive an odor-specific inhibition through inhibitory multiglomerular PNs. In summary, our study indicates that odor representations in glutamatergic LHNs encode hedonic valence and odor identity and primarily retain the odor coding properties of second-order neurons.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Philipp Schlegel ◽  
Alexander Shakeel Bates ◽  
Tomke Stürner ◽  
Sridhar R Jagannathan ◽  
Nikolas Drummond ◽  
...  

The hemibrain connectome provides large scale connectivity and morphology information for the majority of the central brain of Drosophila melanogaster. Using this data set, we provide a complete description of the Drosophila olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. Leveraging a second data set we provide a first quantitative assessment of inter- versus intra-individual stereotypy. Comparing neurons across two brains (three hemispheres) reveals striking similarity in neuronal morphology across brains. Connectivity correlates with morphology and neurons of the same morphological type show similar connection variability within the same brain as across two brains.


2021 ◽  
Author(s):  
Andrew M.M. Matheson ◽  
Aaron J. Lanz ◽  
Angela M. Licata ◽  
Timothy A. Currier ◽  
Mubarak H. Syed ◽  
...  

AbstractTo navigate towards odor in a turbulent environment, animals integrate odor value cues with wind direction cues. The central neural circuits subserving this behavior are unknown. Here we used optogenetic activation to identify neurons in the lateral horn (LH), mushroom body (MB), and fan-shaped body (FB), that drive upwind orientation in walkingDrosophila. Using calcium imaging, we show that MB/LH neurons encode odor independent of wind direction, and that odor and wind are integrated within hΔC local neurons of the FB to drive re-orientation. Based on connectome data, we model an FB circuit that allows odor to switch behavioral orientation to wind. Our work identifies central neural circuits that integrate value and direction signals to generate an essential goal-directed behavior.


2021 ◽  
Vol 383 (1) ◽  
pp. 113-123
Author(s):  
Sudeshna Das Chakraborty ◽  
Silke Sachse

AbstractSensing olfactory signals in the environment represents a crucial and significant task of sensory systems in almost all organisms to facilitate survival and reproduction. Notably, the olfactory system of diverse animal phyla shares astonishingly many fundamental principles with regard to anatomical and functional properties. Binding of odor ligands by chemosensory receptors present in the olfactory peripheral organs leads to a neuronal activity that is conveyed to first and higher-order brain centers leading to a subsequent odor-guided behavioral decision. One of the key centers for integrating and processing innate olfactory behavior is the lateral horn (LH) of the protocerebrum in insects. In recent years the LH of Drosophila has garnered increasing attention and many studies have been dedicated to elucidate its circuitry. In this review we will summarize the recent advances in mapping and characterizing LH-specific cell types, their functional properties with respect to odor tuning, their neurotransmitter profiles, their connectivity to pre-synaptic and post-synaptic partner neurons as well as their impact for olfactory behavior as known so far.


Author(s):  
Philipp Schlegel ◽  
Alexander Shakeel Bates ◽  
Tomke Stürner ◽  
Sridhar R. Jagannathan ◽  
Nikolas Drummond ◽  
...  

AbstractThe hemibrain connectome (Scheffer et al., 2020) provides large scale connectivity and morphology information for the majority of the central brain of Drosophila melanogaster. Using this data set, we provide a complete description of the most complex olfactory system studied at synaptic resolution to date, covering all first, second and third-order neurons of the olfactory system associated with the antennal lobe and lateral horn (mushroom body neurons are described in a parallel paper, (Li et al., 2020)). We develop a generally applicable strategy to extract information flow and layered organisation from synaptic resolution connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. We also leverage a second data set (FAFB, (Zheng et al., 2018)) to provide a first quantitative assessment of inter- versus intra-individual stereotypy. Complete reconstruction of select developmental lineages in two brains (three brain hemispheres) reveals striking similarity in neuronal morphology across brains for >170 cell types. Within and across brains, connectivity correlates with morphology. Notably, neurons of the same morphological type show similar connection variability within one brain as across brains; this property should enable a rigorous quantitative approach to cell typing.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
X. Chu ◽  
P. KC ◽  
E. Ian ◽  
P. Kvello ◽  
Y. Liu ◽  
...  

AbstractMany insects possess the ability to detect fine fluctuations in the environmental CO2 concentration. In herbivorous species, plant-emitted CO2, in combination with other sensory cues, affect many behaviors including foraging and oviposition. In contrast to the comprehensive knowledge obtained on the insect olfactory pathway in recent years, we still know little about the central CO2 system. By utilizing intracellular labeling and mass staining, we report the neuroanatomy of projection neurons connected with the CO2 sensitive antennal-lobe glomerulus, the labial pit organ glomerulus (LPOG), in the noctuid moth, Helicoverpa armigera. We identified 15 individual LPOG projection neurons passing along different tracts. Most of these uniglomerular neurons terminated in the lateral horn, a previously well-described target area of plant-odor projection neurons originating from the numerous ordinary antennal-lobe glomeruli. The other higher-order processing area for odor information, the calyces, on the other hand, was weakly innervated by the LPOG neurons. The overlapping LPOG terminals in the lateral horn, which is considered important for innate behavior in insects, suggests the biological importance of integrating the CO2 input with plant odor information while the weak innervation of the calyces indicates the insignificance of this ubiquitous cue for learning mechanisms.


2020 ◽  
Author(s):  
Haoyang Rong ◽  
Lijun Zhang ◽  
Cody Greer ◽  
Yehuda Ben-Shahar ◽  
Tim Holy ◽  
...  

AbstractHow is sensory information routed through different types of neurons within a circuit, and do equivalent circuits in different individuals follow similar organizational principles? We examined this issue in the fruit fly olfactory system. Odor-evoked signals from sensory neurons (ORNs) triggered neural responses that were patterned over space and time in cholinergic ePNs and GABAergic iPNs within the antennal lobe. The dendritic-axonal (I/O) response mapping was complex and diverse, and axonal organization was region-specific (mushroom body vs. lateral horn). In the lateral horn, feed-forward excitatory and inhibitory axonal projections matched ‘odor tuning’ in a stereotyped, dorsal-lateral locus, but mismatched in most other locations. In the temporal dimension, ORN, ePN and iPN odor-evoked responses had similar encoding features, such as information refinement over time and divergent ON and OFF responses. Notably, analogous spatial and temporal coding principles were observed in all flies, and the latter emerged from idiosyncratic neural processing approaches.HighlightsConsistency and idiosyncrasy both exist in ORN, ePN and iPN functional mapsSignal transformations between different ePN compartments are complex and diverseTemporal decorrelation between stimuli happens in all three neuronal populationsOFF responses that are orthogonal to ON responses emerge after odor termination


Author(s):  
Claire Eschbach ◽  
Akira Fushiki ◽  
Michael Winding ◽  
Bruno Afonso ◽  
Ingrid V Andrade ◽  
...  

AbstractAnimal behavior is shaped both by evolution and by individual experience. In many species parallel brain pathways are thought to encode innate and learnt behavior drives and as a result may link the same sensory cue to different actions if innate and learnt drives are in opposition. How these opposing drives are integrated into a single coherent action is not well understood. In insects, the Mushroom Body Output Neurons (MBONs) and the Lateral Horn Neurons (LHNs) are thought to provide the learnt and innate drives, respectively. However their patterns of convergence and the mechanisms by which their outputs are used to select actions are not well understood. We used electron microscopy reconstruction to comprehensively map the downstream targets of all MBONs in Drosophila larva and characterise their patterns of convergence with LHNs. We discovered convergence neurons that receive direct input from MBONs and LHNs and compare opposite behaviour drives. Functional imaging and optogenetic manipulation suggest these convergence neurons compute the overall predicted value of approaching or avoiding an odor and mediate action selection. Our study describes the circuit mechanisms allowing integration of opposing drives from parallel olfactory pathways.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hadas Lerner ◽  
Eyal Rozenfeld ◽  
Bar Rozenman ◽  
Wolf Huetteroth ◽  
Moshe Parnas
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document