scholarly journals Standard (3, 5)-threshold quantum secret sharing by maximally entangled 6-qubit states

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinxiang Long ◽  
Cai Zhang ◽  
Zhiwei Sun

AbstractIn this paper, a standard (3, 5)-threshold quantum secret sharing scheme is presented, in which any three of five participants can resume cooperatively the classical secret from the dealer, but one or two shares contain absolutely no information about the secret. Our scheme can be fulfilled by using the singular properties of maximally entangled 6-qubit states found by Borras. We analyze the scheme’s security by several ways, for example, intercept-and-resend attack, entangle-and-measure attack, and so on. Compared with the other standard threshold quantum secret sharing schemes, our scheme needs neither to use d-level multipartite entangled states, nor to produce shares by classical secret splitting techniques, so it is feasible to be realized.

2018 ◽  
Vol 32 (22) ◽  
pp. 1850256 ◽  
Author(s):  
Ai Han Yin ◽  
Yan Tong

Semi-quantum secret sharing (SQSS) can transmit secret messages. Most existing SQSS protocols can only use one or two specific entangled states to share unspecific or specific classical message. In this paper, we propose a novel SQSS protocol using N different unspecific two-particle entangled state [Formula: see text], [Formula: see text] to share unspecific message, in which quantum Alice can transmit classical messages with classical Bob and Charlie. In addition, we have proved that the protocol can strongly resist some forms of eavesdropping.


2005 ◽  
Vol 5 (1) ◽  
pp. 68-79 ◽  
Author(s):  
H. Imai ◽  
J. Mueller-Quade ◽  
A.C.A. Nascimento ◽  
P. Tuyls ◽  
A. Winter

Similarly to earlier models for quantum error correcting codes, we introduce a quantum information theoretical model for quantum secret sharing schemes. This model provides new insights into the theory of quantum secret sharing. By using our model, among other results, we give a shorter proof of Gottesman's theorem that the size of the shares in a quantum secret sharing scheme must be as large as the secret itself. Also, we introduced approximate quantum secret sharing schemes and showed robustness of quantum secret sharing schemes by extending Gottesman's theorem to the approximate case.


2019 ◽  
Vol 33 (28) ◽  
pp. 1950347
Author(s):  
Gan Gao ◽  
Hong-Ru Song

In the paper [Mod. Phys. Lett. B 33 (2019) 1950023 ], Qin et al. proposed a three-party quantum secret sharing scheme based on [Formula: see text]-dimensional Bell states. We study the security of the proposed scheme and find that it is not secure, that is, one sharer can obtain Alice’s secret messages without the help of the other sharer.


2019 ◽  
Vol 33 (04) ◽  
pp. 1950045 ◽  
Author(s):  
Qijian He ◽  
Wei Yang ◽  
Bingren Chen ◽  
Liusheng Huang

A semi-quantum secret sharing scheme using entangled states was proposed in a recent paper [Mod. Phys. Lett. B 32 (2018) 1850256. https://doi.org/10.1142/S0217984918502561 ]. We find a loophole of this scheme. Based on the intercept-resend attack, we propose a deterministic attack strategy and a probabilistic attack strategy. The malicious participant can escape the detection and obtains the secret. We also suggest two improvements to help increase the security of the original scheme.


2015 ◽  
Vol 29 (27) ◽  
pp. 1550165 ◽  
Author(s):  
Huawang Qin ◽  
Xiaohua Zhu ◽  
Yuewei Dai

A proactive quantum secret sharing scheme is proposed, in which the participants can update their shadows periodically. In an updating period, one participant randomly generates the GHZ states and sends the particles to the other participants, and the participants update their shadows according to the measurement performed on the particles. After an updating period, each participant can change his shadow but the secret is changeless. The old shadows will be useless even if they have been stolen by the attacker. The proactive property is very useful to resist the mobile attacker.


2018 ◽  
Vol 16 (03) ◽  
pp. 1850030 ◽  
Author(s):  
Gan Gao

In the paper [H. Abulkasim et al., Int. J. Quantum Inform. 15 (2017) 1750023], Abulkasim et al. proposed a quantum secret sharing scheme based on Bell states. We study the security of the multiparty case in the proposed scheme and detect that it is not secure. In the paper [Y. Du and W. Bao, Opt. Commun. 308 (2013) 159], Du and Bao listed Gao’s scheme and gave a attack strategy on the listed scheme. We point out that their listing scheme is not the genuine Gao’s scheme and their research method is not advisable.


Sign in / Sign up

Export Citation Format

Share Document