scholarly journals Low bend loss femtosecond laser written waveguides exploiting integrated microcrack

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Timothy Lee ◽  
Qi Sun ◽  
Martynas Beresna ◽  
Gilberto Brambilla

AbstractWe introduce the fabrication and use of microcracks embedded in glass as an optical element for manipulating light propagation, in particular for enhancing waveguide performance in silica integrated optics. By using a femtosecond laser to induce a strong asymmetric stress pattern in silica, uniform cracks with set dimensions can be created within the substrate and propagated along a fixed path. The smoothness of the resulting cleave interface and large index contrast can be exploited to enhance waveguide modal confinement. As a demonstration, we tackle the longstanding high bend-loss issue in femtosecond laser written silica waveguides by using this technique to cleave the outer edge of laser written waveguide bends, to suppress radiative bend loss. The microcrack cross section is estimated to be 15 μm in height and 30 nm in width, for the 10 $$\times$$ ×  10 μm waveguides. At 1550 nm wavelength, losses down to 1 dB/cm at 10 mm bend radius were achieved, without introducing additional scattering. Both the cleave stress pattern and waveguide are fabricated with the same multiscan writing procedure, without requiring additional steps, and re-characterisation of the waveguides after 1 year confirm excellent long term performance stability.

Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

2008 ◽  
Vol 56 (S 1) ◽  
Author(s):  
CC Badiu ◽  
W Eichinger ◽  
D Ruzicka ◽  
I Hettich ◽  
S Bleiziffer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document