scholarly journals Molecular characterization of a soybean FT homologue, GmFT7

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Senhao Zhang ◽  
Mohan B. Singh ◽  
Prem L. Bhalla

AbstractSoybean (Glycine max) is a vital oilseed legume crop that provides protein and oil for humans and feedstock for animals. Flowering is a prerequisite for seed production. Floral transition, from vegetative to reproductive stage, in a plant, is regulated by environmental (light, temperature) and endogenous factors. In Arabidopsis, Flowering Locus T (FT) protein is shown to be a mobile signal that moves from leaf to shoot apical meristem to induce flowering. However, FTs role in soybean is not fully resolved due to the presence of multiple (ten) homologs in the genome. Two of the ten FT homologs (GmFT2a and GmFT5a) have a role in the floral transition while GmFT1a and GmFT4 suppress soybean flowering. Recent deep sequencing data revealed that six FT homologs are expressed in shoot apical meristem and leaves during floral transition. One FT homolog, GmFT7 showed strong expression during soybean floral transition. Though bioinformatic analyses revealed that GmFT7 had high similarity with GmFT2a, ectopic GmFT7 expression in Arabidopsis could not promote flowering or rescue the late-flowering phenotype of Arabidopsis ft-10 mutant.

2012 ◽  
Vol 3 (1) ◽  
pp. 3 ◽  
Author(s):  
Chui E. Wong ◽  
Mohan B. Singh ◽  
Prem L. Bhalla

The shoot apical meristem houses stem cells responsible for the continuous formation of aerial plant organs including leaves and stems throughout the life of plants. Laser-microdissection in combination with high-throughput technology such as next generation sequencing permits an in-depth analysis of molecular events associated with specific cell type of interest. Sample preparation is the most critical step in ensuring good quality RNA to be extracted from samples following laser-microdissection. Here, we optimized the sample preparation for a major legume crop, soybean. We used Farmer’s solution as a fixative and paraffin as the embedding medium for soybean shoot apical meristem tissue without the use of any specialized equipment. Shorter time for tissue fixation (two days) was found to be critical for the preservation of RNA in soybean shoot apical meristem. We further demonstrated the utility of this method for different tissues derived from soybean and rice. The method outlined here shall facilitate studies on crop plants involving laser-microdissection.


2020 ◽  
Vol 229 (1) ◽  
pp. 429-443
Author(s):  
Martina Cerise ◽  
Francesca Giaume ◽  
Mary Galli ◽  
Bahman Khahani ◽  
Jérémy Lucas ◽  
...  

2008 ◽  
Vol 3 (4) ◽  
pp. 484-488
Author(s):  
Zhe Hu ◽  
Ping Li ◽  
Jinfang Ma ◽  
Yunlong Wang ◽  
Xinyu Wang ◽  
...  

2013 ◽  
Vol 54 (3) ◽  
pp. 302-312 ◽  
Author(s):  
Michael Pautler ◽  
Wakana Tanaka ◽  
Hiro-Yuki Hirano ◽  
David Jackson

Development ◽  
2020 ◽  
Vol 148 (1) ◽  
pp. dev193870
Author(s):  
Hendry Susila ◽  
Zeeshan Nasim ◽  
Katarzyna Gawarecka ◽  
Ji-Yul Jung ◽  
Suhyun Jin ◽  
...  

ABSTRACTPHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE 1 (PECT1) regulates phosphatidylethanolamine biosynthesis and controls the phosphatidylethanolamine:phosphatidylcholine ratio in Arabidopsis thaliana. Previous studies have suggested that PECT1 regulates flowering time by modulating the interaction between phosphatidylcholine and FLOWERING LOCUS T (FT), a florigen, in the shoot apical meristem (SAM). Here, we show that knockdown of PECT1 by artificial microRNA in the SAM (pFD::amiR-PECT1) accelerated flowering under inductive and even non-inductive conditions, in which FT transcription is almost absent, and in ft-10 twin sister of ft-1 double mutants under both conditions. Transcriptome analyses suggested that PECT1 affects flowering by regulating SHORT VEGETATIVE PHASE (SVP) and GIBBERELLIN 20 OXIDASE 2 (GA20ox2). SVP misexpression in the SAM suppressed the early flowering of pFD::amiR-PECT1 plants. pFD::amiR-PECT1 plants showed increased gibberellin (GA) levels in the SAM, concomitant with the reduction of REPRESSOR OF GA1-3 levels. Consistent with this, GA treatment had little effect on flowering time of pFD::amiR-PECT1 plants and the GA antagonist paclobutrazol strongly affected flowering in these plants. Together, these results suggest that PECT1 also regulates flowering time through a florigen-independent pathway, modulating SVP expression and thus regulating GA production.


Sign in / Sign up

Export Citation Format

Share Document