scholarly journals Variability in mRNA translation: a random matrix theory approach

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael Margaliot ◽  
Wasim Huleihel ◽  
Tamir Tuller

AbstractThe rate of mRNA translation depends on the initiation, elongation, and termination rates of ribosomes along the mRNA. These rates depend on many “local” factors like the abundance of free ribosomes and tRNA molecules in the vicinity of the mRNA molecule. All these factors are stochastic and their experimental measurements are also noisy. An important question is how protein production in the cell is affected by this considerable variability. We develop a new theoretical framework for addressing this question by modeling the rates as identically and independently distributed random variables and using tools from random matrix theory to analyze the steady-state production rate. The analysis reveals a principle of universality: the average protein production rate depends only on the of the set of possible values that the random variable may attain. This explains how total protein production can be stabilized despite the overwhelming stochasticticity underlying cellular processes.

Author(s):  
Alicja Dembczak-Kołodziejczyk ◽  
Anna Lytova

Given [Formula: see text], we study two classes of large random matrices of the form [Formula: see text] where for every [Formula: see text], [Formula: see text] are iid copies of a random variable [Formula: see text], [Formula: see text], [Formula: see text] are two (not necessarily independent) sets of independent random vectors having different covariance matrices and generating well concentrated bilinear forms. We consider two main asymptotic regimes as [Formula: see text]: a standard one, where [Formula: see text], and a slightly modified one, where [Formula: see text] and [Formula: see text] while [Formula: see text] for some [Formula: see text]. Assuming that vectors [Formula: see text] and [Formula: see text] are normalized and isotropic “in average”, we prove the convergence in probability of the empirical spectral distributions of [Formula: see text] and [Formula: see text] to a version of the Marchenko–Pastur law and the so-called effective medium spectral distribution, correspondingly. In particular, choosing normalized Rademacher random variables as [Formula: see text], in the modified regime one can get a shifted semicircle and semicircle laws. We also apply our results to the certain classes of matrices having block structures, which were studied in [G. M. Cicuta, J. Krausser, R. Milkus and A. Zaccone, Unifying model for random matrix theory in arbitrary space dimensions, Phys. Rev. E 97(3) (2018) 032113, MR3789138; M. Pernici and G. M. Cicuta, Proof of a conjecture on the infinite dimension limit of a unifying model for random matrix theory, J. Stat. Phys. 175(2) (2019) 384–401, MR3968860].


2013 ◽  
Vol 88 (2) ◽  
Author(s):  
Martin Schmidt ◽  
Tsampikos Kottos ◽  
Boris Shapiro

2001 ◽  
Vol 299 (1-2) ◽  
pp. 175-180 ◽  
Author(s):  
V. Plerou ◽  
P. Gopikrishnan ◽  
B. Rosenow ◽  
L.A.N. Amaral ◽  
H.E. Stanley

Sign in / Sign up

Export Citation Format

Share Document