heat current
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 77)

H-INDEX

22
(FIVE YEARS 5)

Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 32
Author(s):  
Yu-qiang Liu ◽  
Deng-hui Yu ◽  
Chang-shui Yu

Quantum thermal transistor is a microscopic thermodynamical device that can modulate and amplify heat current through two terminals by the weak heat current at the third terminal. Here we study the common environmental effects on a quantum thermal transistor made up of three strong-coupling qubits. It is shown that the functions of the thermal transistor can be maintained and the amplification rate can be modestly enhanced by the skillfully designed common environments. In particular, the presence of a dark state in the case of the completely correlated transitions can provide an additional external channel to control the heat currents without any disturbance of the amplification rate. These results show that common environmental effects can offer new insights into improving the performance of quantum thermal devices.


2021 ◽  
Vol 15 (1) ◽  
pp. 013001
Author(s):  
Minori Goto ◽  
Reika Kobayashi ◽  
Ryota Okuno ◽  
Tomohito Mizuno ◽  
Takekazu Yamane ◽  
...  

Abstract We investigated the heat controlled magnetic anisotropy (HCMA) in magnetic tunnel junctions with various junction sizes. We evaluated the HCMA from perpendicular magnetic anisotropy under a direct current voltage measured by the spin-torque diode technique. The maximum HCMA magnitude of 5.4 μJ (Wm)−1 was observed, and the HCMA increased with increasing diameter. Our results can be explained by a simple heat dissipation model and suggest that the in-plane heat current affects HCMA.


Author(s):  
Rodrigo Vargas ◽  
Ricky T. Q. Chen ◽  
Kenneth A. Jung ◽  
Paul Brumer

Abstract In the case of quantum systems interacting with multiple environments, the time-evolution of the reduced density matrix is described by the Liouvillian. For a variety of physical observables, the long-time limit or steady state solution is needed for the computation of desired physical observables. For inverse design or optimal control of such systems, the common approaches are based on brute-force search strategies. Here, we present a novel methodology, based on automatic differentiation, capable of differentiating the steady state solution with respect to any parameter of the Liouvillian. Our approach has a low memory cost, and is agnostic to the exact algorithm for computing the steady state. We illustrate the advantage of this method by inverse designing the parameters of a quantum heat transfer device that maximizes the heat current and the rectification coefficient. Additionally, we optimize the parameters of various Lindblad operators used in the simulation of energy transfer under natural incoherent light. We also present a sensitivity analysis of the steady state for energy transfer under natural incoherent light as a function of the incoherent- light pumping rate.


2021 ◽  
Vol 2021 (11) ◽  
pp. 113204 ◽  
Author(s):  
Gaëtan Cane ◽  
Junaid Majeed Bhat ◽  
Abhishek Dhar ◽  
Cédric Bernardin

Abstract We consider a harmonic chain of N oscillators in the presence of a disordered magnetic field. The ends of the chain are connected to heat baths and we study the effects of the magnetic field randomness on heat transport. The disorder, in general, causes localization of the normal modes, due to which a system becomes insulating. However, for this system, the localization length diverges as the normal mode frequency approaches zero. Therefore, the low frequency modes contribute to the transmission, T N ( ω ) , and the heat current goes down as a power law with the system size, N. This power law is determined by the small frequency behaviour of some Lyapunov exponents, λ(ω), and the transmission in the thermodynamic limit, T ∞ ( ω ) . While it is known that in the presence of a constant magnetic field T ∞ ( ω ) ∼ ω 3 / 2 , ω 1 / 2 depending on the boundary conditions, we find that the Lyapunov exponent for the system behaves as λ(ω) ∼ ω for B ≠ 0 and λ(ω) ∼ ω 2/3 for B = 0 . Therefore, we obtain different power laws for current vs N depending on B and the boundary conditions.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1183
Author(s):  
Wen-Li Yu ◽  
Tao Li ◽  
Hai Li ◽  
Yun Zhang ◽  
Jian Zou ◽  
...  

We study a scheme of thermal management where a three-qubit system assisted with a coherent auxiliary bath (CAB) is employed to implement heat management on a target thermal bath (TTB). We consider the CAB/TTB being ensemble of coherent/thermal two-level atoms (TLAs), and within the framework of collision model investigate the characteristics of steady heat current (also called target heat current (THC)) between the system and the TTB. It demonstrates that with the help of the quantum coherence of ancillae the magnitude and direction of heat current can be controlled only by adjusting the coupling strength of system-CAB. Meanwhile, we also show that the influences of quantum coherence of ancillae on the heat current strongly depend on the coupling strength of system—CAB, and the THC becomes positively/negatively correlated with the coherence magnitude of ancillae when the coupling strength below/over some critical value. Besides, the system with the CAB could serve as a multifunctional device integrating the thermal functions of heat amplifier, suppressor, switcher and refrigerator, while with thermal auxiliary bath it can only work as a thermal suppressor. Our work provides a new perspective for the design of multifunctional thermal device utilizing the resource of quantum coherence from the CAB.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Aristomenis Donos ◽  
Polydoros Kailidis ◽  
Christiana Pantelidou

Abstract We study dissipation in holographic superfluids at finite temperature and zero chemical potential. The zero overlap with the heat current allows us to isolate the physics of the conserved current corresponding to the broken global U(1). By using analytic techniques we write constitutive relations including the first non-trivial dissipative terms. The corresponding transport coefficients are determined in terms of thermodynamic quantities and the black hole horizon data. By analysing their behaviour close to the phase transition we show explicitly the breakdown of the hydrodynamic expansion. Finally, we study the pseudo-Goldstone mode that emerges upon introducing a perturbative symmetry breaking source and we determine its resonant frequency and decay rate.


Sign in / Sign up

Export Citation Format

Share Document