scholarly journals Reconstruction algorithm for tunneling ionization with a perturbation for the time-domain observation of an electric-field

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wosik Cho ◽  
Jeong-uk Shin ◽  
Kyung Taec Kim

AbstractWe present a reconstruction algorithm developed for the temporal characterization method called tunneling ionization with a perturbation for the time-domain observation of an electric field (TIPTOE). The reconstruction algorithm considers the high-order contribution of an additional laser pulse to ionization, enabling the use of an intense additional laser pulse. Therefore, the signal-to-noise ratio of the TIPTOE measurement is improved by at least one order of magnitude compared to the first-order approximation. In addition, the high-order contribution provides additional information regarding the pulse envelope. The reconstruction algorithm was tested with ionization yields obtained by solving the time-dependent Schrödinger equation. The optimal conditions for accurate reconstruction were analyzed. The reconstruction algorithm was also tested using experimental data obtained using few-cycle laser pulses. The reconstructed pulses obtained under different dispersion conditions exhibited good consistency. These results confirm the validity and accuracy of the reconstruction process.

2021 ◽  
Author(s):  
Wosik Cho ◽  
Jeong-uk Shin ◽  
Kyung Taec Kim

Abstract We present a reconstruction algorithm developed for the temporal characterization method called tunneling ionization with a perturbation for the time-domain observation of an electric field (TIPTOE). The reconstruction algorithm considers the high-order contribution of an additional laser pulse to ionization, enabling the use of an intense additional laser pulse. Therefore, the signal-to-noise ratio of the TIPTOE measurement is improved by at least one order of magnitude compared to the first-order approximation. In addition, the high-order contribution provides additional information regarding the pulse envelope. The reconstruction algorithm was tested with ionization yields obtained by solving the time-dependent Schrödinger equation. The optimal conditions for accurate reconstruction were analyzed. The reconstruction algorithm was also tested using experimental data obtained using few-cycle laser pulses. The reconstructed pulses obtained under different dispersion conditions exhibited good consistency. These results confirmed the validity and accuracy of the reconstruction process.


Author(s):  
Win-Jet Luo ◽  
Jia-Kun Chen ◽  
Ruey-Jen Yang

A backwards-Euler time-stepping numerical method is applied to simulate the transient response of electroosmotic flow in a curved microtube. The velocity responses of the flow fields induced by applied sinusoidal AC electric fields of different frequencies are investigated. The transient response of the system is fundamentally important since both the amplitude and the time duration of the transient response must be maintained within tolerable or prescribed limits. When a sinusoidal AC electric field is applied, the transient response of the output velocity oscillates in the time-domain. However, after a certain settling time, the output velocity attains a sustained oscillation with the same amplitude as the driving field. In this study, the transient response of the electroosmotic flow is characterized by the time taken by the velocity response to reach the first peak, the peak of the sustained oscillation, the maximum overshoot, the settling time, and the bandwidth of the sustained oscillations in the time-domain. Meanwhile, the performance of the system is identified by plotting the output velocity response and the output velocity phase-shift against the frequency of the applied signal. A finite time is required for the momentum to diffuse fully from the walls to the center of the curved microtube cross-section. As the applied frequency is increased, the maximum overshoot and the bandwidth and peak of the sustained oscillations gradually decrease since insufficient time exists for the momentum to diffuse fully to the center of the microtube. Additionally, the phase-shift between the applied electric field and the output velocity response gradually increases as the frequency of the applied signal is increased.


2012 ◽  
Vol 41 (12) ◽  
pp. 4457 ◽  
Author(s):  
Hanju Rhee ◽  
Intae Eom ◽  
Sung-Hyun Ahn ◽  
Minhaeng Cho

2012 ◽  
Vol 11 (2) ◽  
pp. 383-399 ◽  
Author(s):  
Q. Chen ◽  
P. Monk ◽  
X. Wang ◽  
D. Weile

AbstractWe show how to apply convolution quadrature (CQ) to approximate the time domain electric field integral equation (EFIE) for electromagnetic scattering. By a suitable choice of CQ, we prove that the method is unconditionally stable and has the optimal order of convergence. Surprisingly, the resulting semi discrete EFIE is dispersive and dissipative, and we analyze this phenomena. Finally, we present numerical results supporting and extending our convergence analysis.


Sign in / Sign up

Export Citation Format

Share Document