scholarly journals Enhanced (t, n) threshold d-level quantum secret sharing

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kartick Sutradhar ◽  
Hari Om

AbstractThe quantum secret sharing is an essential and fundamental technique for sharing a secret with the all participants in quantum cryptography. It can be used to design many complex protocols such as secure multiparty summation, multiplication, sorting, voting, etc. Recently, Song et al. have discussed a quantum protocol for secret sharing, which has (t, n) threshold approach and modulo d, where t and n denote the threshold number of participants and total number of participants, respectively. Kao et al. point out that the secret in the Song et al.’s protocol cannot be reconstructed without other participants’ information. In this paper, we discuss a protocol that overcomes this problem.

2005 ◽  
Vol 95 (20) ◽  
Author(s):  
Yu-Ao Chen ◽  
An-Ning Zhang ◽  
Zhi Zhao ◽  
Xiao-Qi Zhou ◽  
Chao-Yang Lu ◽  
...  

2019 ◽  
Vol 34 (27) ◽  
pp. 1950213 ◽  
Author(s):  
Chia-Wei Tsai ◽  
Chun-Wei Yang ◽  
Narn-Yih Lee

Quantum secret sharing protocol, which lets a master share a secret with his/her agents and the agents can recover the master’s secret when they collaborate, is an important research issue in the quantum information field. In order to make the quantum protocol more practical, the concept of semi-quantum protocol is advanced by Boyer et al. Based on this concept, many semi-quantum secret sharing protocols have been proposed. The various entanglement states (including Bell state, GHZ state and so on) were used to be the quantum resources in these SQSS protocols, except for W-state which is the other multi-qubit entanglement state and different from GHZ states. Therefore, this study wants to use the entanglement property of W-state to propose the first three-party SQSS protocol and analyze the proposed protocol is free from the well-known attacks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yao-Hsin Chou ◽  
Guo-Jyun Zeng ◽  
Xing-Yu Chen ◽  
Shu-Yu Kuo

AbstractSecret sharing is a widely-used security protocol and cryptographic primitive in which all people cooperate to restore encrypted information. The characteristics of a quantum field guarantee the security of information; therefore, many researchers are interested in quantum cryptography and quantum secret sharing (QSS) is an important research topic. However, most traditional QSS methods are complex and difficult to implement. In addition, most traditional QSS schemes share classical information, not quantum information which makes them inefficient to transfer and share information. In a weighted threshold QSS method, each participant has each own weight, but assigning weights usually costs multiple quantum states. Quantum state consumption will therefore increase with the weight. It is inefficient and difficult, and therefore not able to successfully build a suitable agreement. The proposed method is the first attempt to build multiparty weighted threshold QSS method using single quantum particles combine with the Chinese remainder theorem (CRT) and phase shift operation. The proposed scheme allows each participant has its own weight and the dealer can encode a quantum state with the phase shift operation. The dividing and recovery characteristics of CRT offer a simple approach to distribute partial keys. The reversibility of phase shift operation can encode and decode the secret. The proposed weighted threshold QSS scheme presents the security analysis of external attacks and internal attacks. Furthermore, the efficiency analysis shows that our method is more efficient, flexible, and simpler to implement than traditional methods.


2009 ◽  
Vol 18 (11) ◽  
pp. 4690-4694 ◽  
Author(s):  
Gu Bin ◽  
Li Chuan-Qi ◽  
Xu Fei ◽  
Chen Yu-Lin

2002 ◽  
Author(s):  
Guo-Ping Guo ◽  
Guangcan Guo

2017 ◽  
Vol 381 (11) ◽  
pp. 998-1002 ◽  
Author(s):  
Jing-Tao Wang ◽  
Gang Xu ◽  
Xiu-Bo Chen ◽  
Xing-Ming Sun ◽  
Heng-Yue Jia

2012 ◽  
Vol 10 (03) ◽  
pp. 1250031 ◽  
Author(s):  
JUAN XU ◽  
HANWU CHEN ◽  
ZHIHAO LIU

Based on an orthogonal set of product states of two three-state particles, a new quantum secret sharing scheme is proposed, which uses a novel distribution strategy so that continuous and independent measurements, rather than particle-wise coordinated ones, are performed. As a result, it is convenient and efficient to implement. The scheme is also secure against several common attacks and gets rid of partial-information leakage due to the revised coding method. Moreover, the quantitative analysis shows that the security can be further improved by using more product states from appropriate multiple sets.


Sign in / Sign up

Export Citation Format

Share Document