scholarly journals Precession cycles of the El Niño/Southern oscillation-like system controlled by Pacific upper-ocean stratification

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Shuai Zhang ◽  
Zhoufei Yu ◽  
Xun Gong ◽  
Yue Wang ◽  
Fengming Chang ◽  
...  

AbstractModern observations have presented linkages between subsurface waters of the western Pacific warm pool and both El Niño/Southern Oscillation-related and extratropic-controlled upper-ocean stratification on interannual timescales. Moreover, studies have showed that such controls may operate on orbital cycles, although the details remain unclear. Here we present paired temperature and salinity reconstructions for the surface and thermocline waters in the central western Pacific warm pool over the past 360,000 years, as well as transit modeling results from an Earth system model. Our results show that variations in subsurface temperature and salinity in the western Pacific warm pool have consistently correlated with the shallow meridional overturning cell over the past four glacial-interglacial cycles, and they vary on eccentricity and precession cycles. The shallow meridional overturning cell regulates subsurface waters of the western Pacific warm pool by changing subtropical surface water density and thus equatorial upper-ocean stratification, acting as an El Niño/Southern Oscillation-like process in the precession band. Therefore, the western Pacific warm pool is critical in connecting the austral shallow meridional overturning cell to the Earth’s climate system on orbital timescales.

2016 ◽  
Vol 49 (7-8) ◽  
pp. 2431-2449 ◽  
Author(s):  
Shijian Hu ◽  
Dunxin Hu ◽  
Cong Guan ◽  
Nan Xing ◽  
Jianping Li ◽  
...  

2020 ◽  
Vol 33 (8) ◽  
pp. 3333-3349 ◽  
Author(s):  
Pang-Chi Hsu ◽  
Yitian Qian ◽  
Yu Liu ◽  
Hiroyuki Murakami ◽  
Yingxia Gao

AbstractIn the summer of 2018, Northeast Asia experienced a heatwave event that broke the existing high-temperature records in several locations in Japan, the Korean Peninsula, and northeastern China. At the same time, an unusually strong Madden–Julian oscillation (MJO) was observed to stay over the western Pacific warm pool. Based on reanalysis diagnosis, numerical experiments, and assessments of real-time forecast data from two subseasonal-to-seasonal (S2S) models, we discovered the importance of the western Pacific MJO in the generation of this heatwave event, as well as its predictability at the subseasonal time scale. During the prolonged extreme heat period (11 July–14 August), a high pressure anomaly with variability at the intraseasonal (30–90 days) time scale appeared over Northeast Asia, causing persistent adiabatic heating and clear skies in this region. As shown in the composites of MJO-related convection and circulation anomalies, the occurrence of this 30–90-day high anomaly over Northeast Asia was linked with an anomalous wave train induced by tropical heating associated with the western tropical Pacific MJO. The impact of the MJO on the heatwave was further confirmed by sensitivity experiments with a coupled GCM. As the western Pacific MJO-related components were removed by nudging prognostic variables over the tropics toward their annual cycle and longer time scales (>90 days) in the coupled GCM, the anomalous wave train along the East Asian coast disappeared and the surface air temperature in Northeast Asia lowered. The MJO over the western Pacific warm pool also influenced the predictability of the extratropical heatwave. Our assessments of two S2S models’ real-time forecasts suggest that the extremity of this Northeast Asian heatwave can be better predicted 1–4 weeks in advance if the enhancement of MJO convection over the western Pacific warm pool is predicted well.


Sign in / Sign up

Export Citation Format

Share Document