el nino southern oscillation
Recently Published Documents


TOTAL DOCUMENTS

1363
(FIVE YEARS 308)

H-INDEX

93
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Paul C. Rivera

An alternative physical mechanism is proposed to describe the occurrence of the episodic El Nino Southern Oscillation (ENSO) and La Nina climatic phenomena. This is based on the earthquake-perturbed obliquity change (EPOCH) model previously discovered as a major cause of the global climate change problem. Massive quakes impart a very strong oceanic force that can move the moon which in turn pulls the earth’s axis and change the planetary obliquity. Analysis of the annual geomagnetic north-pole shift and global seismic data revealed this previously undiscovered force. Using a higher obliquity in the global climate model EdGCM and constant greenhouse gas forcing showed that the seismic-induced polar motion and associated enhanced obliquity could be the major mechanism governing the mysterious climate anomalies attributed to El Nino and La Nina cycles.


2021 ◽  
pp. 1-42

Abstract Climate variabilities can have significant impacts on rainfall in East Africa, leading to disruption in natural and human systems and affecting the lives of tens of millions of people. Subseasonal and interannual variabilities are critical components of total rainfall variability in the region. The goal of this study is to examine the combined effects of the Madden Julian Oscillation (MJO), operating at subseasonal timescale, and the El Niño Southern Oscillation (ENSO), operating at an interannual scale, on the modulation of East African boreal fall (October-November-December; OND) rainfall, commonly called the short rains. Composite analysis shows that daily rainfall responses depend on MJO phase and its interaction with ENSO state. In particular, MJO modulation of rainfall is generally stronger under El Niño conditions relative to ENSO neutral and La Niña conditions, leading to increased potential for daily precipitation excesses during wet MJO phases under El Niño. There is evidence for both dynamic and thermodynamic mechanisms associated with these impacts, including an increase in westerly moisture transport and easterly advection of temperature and moist static energy. Seasonal analysis shows that the frequency and intensity of wet MJO phases during an El Niño contribute notably to the seasonal total precipitation anomaly. This suggests that MJO can mediate El Niño’s impact on OND rainfall in East Africa.


2021 ◽  
Vol 22 (2) ◽  
pp. 51-59
Author(s):  
Adikusuma Bimaprawira ◽  
Hasti Amrih Rejeki

Intisari Jawa Timur merupakan wilayah yang memiliki variasi curah hujan yang dipengaruhi oleh fenomena cuaca global dan regional seperti Dipole Mode, El Nino Southern Oscillation (ENSO), Intertropical Convergence Zone, Madden Julian Oscillation, dan monsun. Topografi yang beragam juga menjadi faktor yang memengaruhi curah hujan di daerah Jawa Timur. Berbagai indeks digunakan untuk melihat aktivitas-aktivitas fenomena cuaca tersebut, seperti DMI untuk aktivitas Dipole Mode, NINO 3.4 untuk aktivitas ENSO, Indeks RMM untuk aktivitas MJO, WNPMI dan, AUSMI untuk aktivitas monsun. Pada penelitian ini digunakan analisis spektral dengan menggunakan metode Fast Fourier Transform untuk melihat periodisitas indeks masing-masing terhadap periodisitas curah hujan dari data 11 pos hujan yang terbagi menjadi 6 pos hujan daerah pesisir dan 5 pos hujan daerah pegunungan. Hasil dari penyeragaman periodisitas fenomena cuaca dengan curah hujan antara lain Dipole Mode (periodisitas 18 bulan), ENSO (periodisitas 18 dan 40 bulan), dan MJO (periodisitas 2 dan 3 bulan). Fenomena yang memengaruhi curah hujan di daerah pesisir maupun pegunungan secara dominan adalah fenomena monsun dengan diikuti ITCZ. Fenomena lain yang memengaruhi di daerah pesisir antara lain dominan MJO, serta fenomena ENSO dan Dipole Mode yang memengaruhi daerah Lamongan, Bunder, dan P3GI dengan kecenderungan lebih kuat pada fenomena Dipole Mode. Sementara itu, fenomena yang memengaruhi hujan di daerah pegunungan secara dominan adalah ENSO. Adapun fenomena lain yang memengaruhi hujan di daerah pegunungan antara lain fenomena MJO di daerah Tosari, serta daerah Kebon Teh Wonosari yang memiliki kecenderungan dipengaruhi oleh fenomena Dipole Mode meskipun pengaruhnya tidak signifikan.   Abstract East Java is a region whose variations in rainfall are influenced by global and regional weather phenomena such as Dipole Mode, El Niño Southern Oscillation (ENSO), Intertropical Convergence Zone, Madden Julian Oscillation, and monsoons. Diverse topography is also a factor affecting rainfall in the area of East Java. Various indices are used to observe the activities of the weather phenomenon, such as DMI for Dipole Mode activities, NINO 3.4 for ENSO activities, RMM Index for MJO activities, as well as WNPMI and AUSMI for monsoon activities. In this study, spectral analysis was used by utilizing the Fast Fourier Transform method to see the periodicity of each index against the periodicity of rainfall from the 11 rainwater data points, which were divided into 6 coastal data points and 5 mountainous data points. Uniformity of weather phenomena with rainfall result among others Dipole Mode (18 months periodicity), ENSO (18 and 40-month periodicity), and MJO (2 and 3-month periodicity). Phenomena that affect rainfall in coastal and mountainous areas predominantly are monsoon, followed by ITCZ. Other phenomena affecting the coastal area include MJO dominant, and the ENSO and Dipole Mode phenomena that affect the Lamongan, Bunder, and P3GI regions with a stronger tendency to the Dipole Mode phenomenon. Another phenomenon that influences rain in the mountainous area is dominantly ENSO, while other phenomena include MJO phenomena in the Tosari area and Kebon Teh Wonosari region which has a tendency to be influenced by the Dipole Mode phenomenon despite the insignificant effect.


2021 ◽  
pp. 1-35

Abstract From 5 July to 11 September 2012, the Amundsen-Scott South Pole station experienced an unprecedented 78 days in a row with a maximum temperature at or below -50°C. Aircraft and ground-based activity cannot function without risk below this temperature. Lengthy periods of extreme cold temperatures are characterized by a drop in pressure of around 15 hPa over four days, accompanied by winds from grid east. Periodic influxes of warm air from the Weddell Sea raise the temperature as the wind shifts to grid north. The end of the event occurs when the temperature increase is enough to move past the -50°C threshold. This study also examines the length of extreme cold periods. The number of days below -50°C in early winter has been decreasing since 1999, and this trend is statistically significant at the 5% level. Late winter shows an increase in the number of days below -50°C for the same period, but this trend is not statistically significant. Changes in the Southern Annular Mode, El Niño Southern Oscillation, and the Interdecadal Pacific Oscillation/Tripole Index are investigated in relation to the initiation of extreme cold events. None of the correlations are statistically significant. A positive Southern Annular Mode and a La Niña event or a central Pacific El Niño Southern Oscillation pattern would position the upper-level circulation to favor a strong, symmetrical polar vortex with strong westerlies over the Southern Ocean, leading to a cold pattern over the South Pole.


Author(s):  
Eun‐Sook Heo ◽  
Soon‐Il An ◽  
Ida Margrethe Ringgaard ◽  
Shuting Yang ◽  
Jens Hesselbjerg Christensen ◽  
...  

2021 ◽  
Vol 4 ◽  
Author(s):  
Jalil Helali ◽  
Hossein Momenzadeh ◽  
Vahideh Saeidi ◽  
Christian Brischke ◽  
Ghanbar Ebrahimi ◽  
...  

The intensive use of wood resources is a challenging subject around the world due to urbanization, population growth, and the biodegradability of wooden materials. The study of the climatic conditions and their effects on biotic wood degradation can provide a track of trends of wood decay and decomposition at regional and global scales to predict the upcoming responses. Thus, it yields an overview for decision-makers and managers to create a precise guideline for the protection of wooden structures and prolonged service life of wooden products. This study aimed at investigating the decay hazard in Iran, its decadal changes, and how it is affected by different phases of the El Niño Southern Oscillation (ENSO). Therefore, the risk for fungal decay of wood was estimated based on the Scheffer Climate Index (SCI) at 100 meteorological stations located in Iran, for the period 1987–2019 (separately for first, second, and third decade as decadal analysis). Subsequently, SCI value trends were analyzed using the Mann–Kendall and Sen’s slope method. Finally, the relationship between SCI and climatic parameters (temperature and precipitation) was explored. Generally, the SCI fluctuated between 2 and 75 across the region. The decay risk was ranked as low in most parts, but moderate in the northern part of the country along the Caspian Sea coastlines. Decadal analysis demonstrated that the highest mean SCI values took more place in the third decade (58% of stations) and the lowest mean SCI values in the second decade (71% of stations). Furthermore, the highest and the lowest SCI values occurred at 70 and 66% of stations in El Niño and Neutral phase, respectively. Trend analysis of SCI values showed that large parts of several provinces (i.e., Markazi, Tehran, Alborz, Qazvin, Zanjan, Ardebil, East Azarbayjan, West Azarbayjan, Kurdestan, Kermanshah, and Ilam) exhibited a significantly increasing decay hazard with a mean SCI of 2.9 during the period of 33 years. An analysis of causative factors (climatic parameters) for these changes revealed that all the meteorological stations experienced a significant increase in temperature while the number of days with more than 0.25 mm precipitation increased at some stations but decreased at others. However, in summary, the SCI increased over time. Hence, in this study, the effect of precipitation on SCI was confirmed to be greater than the temperature. Analysis of the results shows that the correlation between the SCI and ENSO was positive in most of the stations. Moreover, the results of spectral coherent analysis of SCI and ENSO in different climates of Iran showed that the maximum values of SCI do not correspond to the maximum values of ENSO and are associated with lag time. Therefore, the extreme values of the SCI values cannot be interpreted solely on the basis of the ENSO.


Sign in / Sign up

Export Citation Format

Share Document