scholarly journals Increased mitochondrial biogenesis in primary leukemia cells: the role of endogenous nitric oxide and impact on sensitivity to fludarabine

Leukemia ◽  
2004 ◽  
Vol 18 (12) ◽  
pp. 1934-1940 ◽  
Author(s):  
J S Carew ◽  
S T Nawrocki ◽  
R H Xu ◽  
K Dunner ◽  
D J McConkey ◽  
...  
Life Sciences ◽  
2007 ◽  
Vol 80 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Koji Takeuchi ◽  
Ryo Hatazawa ◽  
Mayu Tanigami ◽  
Akiko Tanaka ◽  
Ryoko Ohno ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 72-79
Author(s):  
Alexandra Lee ◽  
◽  
Warwick Butt ◽  
◽  
◽  
...  

Inhaled nitric oxide has been used for 30 years to improve oxygenation and decrease pulmonary vascular resistance. In the past 15 years, there has been increased understanding of the role of endogenous nitric oxide on cell surface receptors, mitochondria, and intracellular processes involving calcium and superoxide radicals. This has led to several animal and human experiments revealing a potential role for administered nitric oxide or nitric oxide donors in patients with systemic inflammatory response syndrome or ischaemia–reperfusion injury, and in patients for whom exposure of blood to artificial surfaces has occurred.


1990 ◽  
Vol 258 (4) ◽  
pp. H1250-H1254 ◽  
Author(s):  
A. Chu ◽  
D. E. Chambers ◽  
C. C. Lin ◽  
W. D. Kuehl ◽  
F. R. Cobb

This study evaluates the role of endogenous nitric oxide in the modulation of basal coronary vasomotor tone by studying the effects of NG-monomethyl-L-arginine (L-NMMA), an inhibitor of nitric oxide formation from L-arginine, on resting epicardial coronary diameter and coronary flow. L-NMMA (5 mg/kg) was infused in seven awake dogs chronically instrumented with coronary dimension crystals for measurement of epicardial coronary diameter, and Doppler flow probes for quantitation of phasic coronary flow (vasomotion of distal regulatory resistance coronary vessels). Epicardial coronary diameter decreased 5.5% from 3.47 +/- 0.17 to 3.28 +/- 0.15 mm (mean +/- SE). The diameter change was gradual, reaching a maximum at 13 +/- 2 min after infusion, and persistent, lasting greater than 90 min. Phasic coronary flow did not change. Mean aortic pressure significantly increased from 99 +/- 3 to 111 +/- 3 mmHg and heart rate decreased from 56 +/- 4 to 46 +/- 3 beats/min. Left ventricular end-diastolic pressure and contractility were not significantly altered. L-Arginine (66 mg/kg) but not D-arginine reversed all hemodynamic parameters. These data support an important role of nitric oxide in modulating basal epicardial coronary vasomotor tone and systemic vascular resistance.


Sign in / Sign up

Export Citation Format

Share Document