mitochondrial biogenesis
Recently Published Documents


TOTAL DOCUMENTS

2174
(FIVE YEARS 634)

H-INDEX

120
(FIVE YEARS 13)

2022 ◽  
Vol 15 ◽  
Author(s):  
Nguyen Thanh Nhu ◽  
Shu-Yun Xiao ◽  
Yijie Liu ◽  
V. Bharath Kumar ◽  
Zhen-Yang Cui ◽  
...  

Neural mitochondrial dysfunction, neural oxidative stress, chronic neuroinflammation, toxic protein accumulation, and neural apoptosis are common causes of neurodegeneration. Elamipretide, a small mitochondrially-targeted tetrapeptide, exhibits therapeutic effects and safety in several mitochondria-related diseases. In neurodegeneration, extensive studies have shown that elamipretide enhanced mitochondrial respiration, activated neural mitochondrial biogenesis via mitochondrial biogenesis regulators (PCG-1α and TFAM) and the translocate factors (TOM-20), enhanced mitochondrial fusion (MNF-1, MNF-2, and OPA1), inhibited mitochondrial fission (Fis-1 and Drp-1), as well as increased mitophagy (autophagy of mitochondria). In addition, elamipretide has been shown to attenuate neural oxidative stress (hydrogen peroxide, lipid peroxidation, and ROS), neuroinflammation (TNF, IL-6, COX-2, iNOS, NLRP3, cleaved caspase-1, IL-1β, and IL-18), and toxic protein accumulation (Aβ). Consequently, elamipretide could prevent neural apoptosis (cytochrome c, Bax, caspase 9, and caspase 3) and enhance neural pro-survival (Bcl2, BDNF, and TrkB) in neurodegeneration. These findings suggest that elamipretide may prevent the progressive development of neurodegenerative diseases via enhancing mitochondrial respiration, mitochondrial biogenesis, mitochondrial fusion, and neural pro-survival pathway, as well as inhibiting mitochondrial fission, oxidative stress, neuroinflammation, toxic protein accumulation, and neural apoptosis. Elamipretide or mitochondrially-targeted peptide might be a targeted agent to attenuate neurodegenerative progression.


Author(s):  
Tatsuro Egawa ◽  
Takeshi Ogawa ◽  
Takumi Yokokawa ◽  
Kohei Kido ◽  
Katsumasa Goto ◽  
...  

Endurance exercise triggers skeletal muscle adaptations, including enhanced insulin signaling, glucose metabolism, and mitochondrial biogenesis. However, exercise-induced skeletal muscle adaptations may not occur in some cases, a condition known as exercise-resistance. Methylglyoxal (MG) is a highly reactive dicarbonyl metabolite and has detrimental effects on the body such as causing diabetic complications, mitochondrial dysfunction, and inflammation. This study aimed to clarify the effect of methylglyoxal on skeletal muscle molecular adaptations following endurance exercise. Mice were randomly divided into 4 groups (n = 12 per group): sedentary control group, voluntary exercise group, MG-treated group, and MG-treated with voluntary exercise group. Mice in the voluntary exercise group were housed in a cage with a running wheel, while mice in the MG-treated groups received drinking water containing 1% MG. Four weeks of voluntary exercise induced several molecular adaptations in the plantaris muscle, including increased expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), mitochondria complex proteins, toll-like receptor 4 (TLR4), 72-kDa heat shock protein (HSP72), hexokinase II, and glyoxalase 1; this also enhanced insulin-stimulated Akt Ser473 phosphorylation and citrate synthase activity. However, these adaptations were suppressed with MG treatment. In the soleus muscle, the exercise-induced increases in the expression of TLR4, HSP72, and advanced glycation end products receptor 1 were inhibited with MG treatment. These findings suggest that MG is a factor that inhibits endurance exercise-induced molecular responses including mitochondrial adaptations, insulin signaling activation, and the upregulation of several proteins related to mitochondrial biogenesis, glucose handling, and glycation in primarily fast-twitch skeletal muscle.


2022 ◽  
Author(s):  
Xin Yao ◽  
Yujie Cao ◽  
Li Lu ◽  
Yuanxia Xu ◽  
Hao Chen ◽  
...  

Abstract Background: Colon cancer is a common gastrointestinal tumor with a poor prognosis, which makes it urgent to explore new therapeutic strategies. The anti-tumor effect of Plasmodium infection has been reported in some murine models, but it is not clear whether it has an anti-colon cancer effect. In this study, we investigated the anti-colon cancer effect of Plasmodium infection and its related mechanisms using a mouse model of colon cancer.Methods: An experimental model was established by intraperitoneal injection of Plasmodium yoelii-infected erythrocytes into mice with colon cancer. The size of tumors was observed dynamically in mice, and the expression of Ki67 detected by immunohistochemistry was to analyze tumor cells proliferation. Apoptosis was assessed by Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining, and the expression of apoptosis concerned proteins, including Bax, Bcl-2, Caspase-9, Cleaved Caspase-3, were detected by western blot and immunohistochemistry, respectively. Transmission electron microscopy (TEM) was used to observe the ultrastructural change of colon cancer cells. And the expression of mitochondrial biogenesis correlative central protein, PGC-1α, and mitophagy relevant crucial proteins, PINK1/Parkin, were detected by western blot. Results: We found that Plasmodium infection reduced the weights and sizes of tumors and decreased the expression of Ki67 in colon cancer-bearing mice. Furthermore, Plasmodium infection promoted mitochondria-mediated apoptosis in colon cancer cells, as evidenced by the increased proportion of TUNEL-positive cells, the up-regulated expression of Bax, Caspase-9, and Cleaved Caspase-3 proteins, and the down-regulated expression of Bcl-2 protein. In colon cancer cells, we found destroyed nucleus, swollen mitochondria, missing cristae, and the decreased number of autolysosomes. In addition, Plasmodium infection disturbed mitochondrial biogenesis and mitophagy through the reduced expression of PGC-1α, PINK1, and Parkin proteins in colon cancer tissues.Conclusions: Plasmodium infection can play an anti-colon cancer role in mice by inhibiting proliferation and promoting mitochondria-mediated apoptosis in colon cancer cells, which may relate to mitochondrial biogenesis and mitophagy.


2022 ◽  
Author(s):  
Huawei Li ◽  
Xiaoling Chen ◽  
Zhiqing Huang ◽  
Daiwen Chen ◽  
Bing Yu ◽  
...  

Ellagic acid (EA) is a natural polyphenolic compound, which shows various effects, such as anti-inflammatory, antioxidant, and inhibition of platelet aggregation. In this study, we investigated the effect of EA...


2021 ◽  
Vol 15 (12) ◽  
pp. 3462-3466
Author(s):  
Eda Akkiz Ağaşcioğlu ◽  
Ofcan Oflaz

Aging seems to be inevitable and gradual loss of physical activity is associated with frailty and many age-related disorders. Exercise is the way of keeping a healthy life and delaying aging process. Deterioration in pulmonary vital capacity is inevitable, and mitochondrial biogenesis also diminishes with aging. Regular aerobic exercise alleviates the diminishing vital capacity while increasing mitochondrial biogenesis in aging. Peroxisome proliferator-activated receptor c coactivator 1 alpha (PGC-1a), which is the master regulator of mitochondrial biogenesis, is activated by reactive oxygen species (ROS). Exercise-induced lactate leads to formation of ROS and synthesis of nitric oxide (NO) at physiological level. PGC1a regulation by NO seems to be controversial. Over the physiological limit of ROS and NO has toxic effects in cellular environment with reduced antioxidant activities in aging. Overall, exercise seems to be beneficial option to alleviate reduction rate of vital capacity and to enhance mitochondrial biogenesis via lactate-induced ROS formation. Keywords: Aging, Exercise, Maximum oxygen consumption rate, Lungs vital capacity, Mitochondria Biogenesis.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Dong-Hoon Hyun ◽  
Jaewang Lee

Neurodegenerative diseases are accompanied by oxidative stress and mitochondrial dysfunction, leading to a progressive loss of neuronal cells, formation of protein aggregates, and a decrease in cognitive or motor functions. Mitochondrial dysfunction occurs at the early stage of neurodegenerative diseases. Protein aggregates containing oxidatively damaged biomolecules and other misfolded proteins and neuroinflammation have been identified in animal models and patients with neurodegenerative diseases. A variety of neurodegenerative diseases commonly exhibits decreased activity of antioxidant enzymes, lower amounts of antioxidants, and altered cellular signalling. Although several molecules have been approved clinically, there is no known cure for neurodegenerative diseases, though some drugs are focused on improving mitochondrial function. Mitochondrial dysfunction is caused by oxidative damage and impaired cellular signalling, including that of peroxisome proliferator-activated receptor gamma coactivator 1α. Mitochondrial function can also be modulated by mitochondrial biogenesis and the mitochondrial fusion/fission cycle. Mitochondrial biogenesis is regulated mainly by sirtuin 1, NAD+, AMP-activated protein kinase, mammalian target of rapamycin, and peroxisome proliferator-activated receptor γ. Altered mitochondrial dynamics, such as increased fission proteins and decreased fusion products, are shown in neurodegenerative diseases. Due to the restrictions of a target-based approach, a phenotype-based approach has been performed to find novel proteins or pathways. Alternatively, plasma membrane redox enzymes improve mitochondrial function without the further production of reactive oxygen species. In addition, inducers of antioxidant response elements can be useful to induce a series of detoxifying enzymes. Thus, redox homeostasis and metabolic regulation can be important therapeutic targets for delaying the progression of neurodegenerative diseases.


2021 ◽  
Vol 19 ◽  
Author(s):  
Nihar Ranjan Das ◽  
Bhupesh Vaidya ◽  
Pragyanshu Khare ◽  
Mahendra Bishnoi ◽  
Shyam Sunder Sharma

Background: PPAR gamma co-activator 1α (PGC-1α) is known as the master regulator of mitochondrial biogenesis. It is also a co-activator of peroxisome proliferator-activated receptor-gamma (PPARγ) and plays a role in preventing mitochondrial dysfunction in several neurodegenerative disorders, including Parkinson’s disease (PD). Depletion in the levels of these proteins has been linked to oxidative stress, inflammation, and DNA damage, all of which are known to contribute to the pathogenesis of PD. Objective: In the present study, combination therapy of PPARγ agonist (GW1929) and PGC-1α activator (alpha-lipoic acid) was employed to ameliorate cognitive deficits, oxidative stress, and inflammation associated with the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. Results: Our study showed that MPTP-induced PD rats exhibited an increase in oxidative stress and inflammation, leading to cognitive deficits. Furthermore, MPTP-induced PD rats also exhibited reduced mitochondrial biogenesis in comparison to control and sham animals. Intraperitoneal administration of GW 1929 and alpha-lipoic acid in doses lower than those earlier reported individually in literature led to an improvement in the cognitive deficits in comparison to MPTP-induced PD rats. These improvements were accompanied by a reduction in the levels of oxidative stress and inflammation. In addition, an increase in mitochondrial biogenesis was also observed after the combination of these pharmacological agents. Conclusion: Our results provide a rationale for the development of agents targeting PPARγ and PGC-1α as potent therapeutics for the treatment of neurological diseases like PD.


Sign in / Sign up

Export Citation Format

Share Document