scholarly journals Advanced-Retarded Differential Equations in Quantum Photonic Systems

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Unai Alvarez-Rodriguez ◽  
Armando Perez-Leija ◽  
Iñigo L. Egusquiza ◽  
Markus Gräfe ◽  
Mikel Sanz ◽  
...  



2000 ◽  
Vol 125 (1-2) ◽  
pp. 309-335 ◽  
Author(s):  
Christopher T.H. Baker




2009 ◽  
Vol 70 (3) ◽  
pp. 1415-1421 ◽  
Author(s):  
Xian-Feng Zhou ◽  
Jin Liang ◽  
Ti-Jun Xiao


1999 ◽  
Vol 4 (3) ◽  
pp. 169-194 ◽  
Author(s):  
Gabriele Gühring ◽  
Frank Räbiger

We investigate the asymptotic properties of the inhomogeneous nonautonomous evolution equation(d/dt)u(t)=Au(t)+B(t)u(t)+f(t),t∈ℝ, where(A,D(A))is a Hille-Yosida operator on a Banach spaceX,B(t),t∈ℝ, is a family of operators inℒ(D(A)¯,X)satisfying certain boundedness and measurability conditions andf∈L loc 1(ℝ,X). The solutions of the corresponding homogeneous equations are represented by an evolution family(UB(t,s))t≥s. For various function spacesℱwe show conditions on(UB(t,s))t≥sandfwhich ensure the existence of a unique solution contained inℱ. In particular, if(UB(t,s))t≥sisp-periodic there exists a unique bounded solutionusubject to certain spectral assumptions onUB(p,0),fandu. We apply the results to nonautonomous semilinear retarded differential equations. For certainp-periodic retarded differential equations we derive a characteristic equation which is used to determine the spectrum of(UB(t,s))t≥s.



2003 ◽  
Vol 2 (2) ◽  
pp. 147-158 ◽  
Author(s):  
R. Ouifki ◽  
◽  
M. L. Hbid ◽  
O. Arino ◽  


Sign in / Sign up

Export Citation Format

Share Document