A unique example of a core-modified bis-proline peptide self-assembling into an infinite hydrogen-bonded β-sheet ribbon: crystal structure of Z-ProNH(CH2)2NHPro-Z

2001 ◽  
pp. 273-274 ◽  
Author(s):  
Darshan Ranganathan ◽  
M. Gopi Kumar ◽  
R. S. K. Kishore ◽  
Isabella L. Karle
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Julia Y. Rho ◽  
Henry Cox ◽  
Edward D. H. Mansfield ◽  
Sean H. Ellacott ◽  
Raoul Peltier ◽  
...  

Abstract Self-assembling peptides have the ability to spontaneously aggregate into large ordered structures. The reversibility of the peptide hydrogen bonded supramolecular assembly make them tunable to a host of different applications, although it leaves them highly dynamic and prone to disassembly at the low concentration needed for biological applications. Here we demonstrate that a secondary hydrophobic interaction, near the peptide core, can stabilise the highly dynamic peptide bonds, without losing the vital solubility of the systems in aqueous conditions. This hierarchical self-assembly process can be used to stabilise a range of different β-sheet hydrogen bonded architectures.


1999 ◽  
Vol 64 (25) ◽  
pp. 9230-9240 ◽  
Author(s):  
Darshan Ranganathan ◽  
V. Haridas ◽  
C. Sivakama Sundari ◽  
D. Balasubramanian ◽  
K. P. Madhusudanan ◽  
...  

Author(s):  
Srinu Tothadi ◽  
Gautam R. Desiraju

The idea of a structural landscape is based on the fact that a large number of crystal structures can be associated with a particular organic molecule. Taken together, all these structures constitute the landscape. The landscape includes polymorphs, pseudopolymorphs and solvates. Under certain circumstances, it may also include multi-component crystals (or co-crystals) that contain the reference molecule as one of the components. Under still other circumstances, the landscape may include the crystal structures of molecules that are closely related to the reference molecule. The idea of a landscape is to facilitate the understanding of the process of crystallization. It includes all minima that can, in principle, be accessed by the molecule in question as it traverses the path from solution to the crystal. Isonicotinamide is a molecule that is known to form many co-crystals. We report here a 2:1 co-crystal of this amide with 3,5-dinitrobenzoic acid, wherein an unusual N−H⋯N hydrogen-bonded pattern is observed. This crystal structure offers some hints about the recognition processes between molecules that might be implicated during crystallization. Also included is a review of other recent results that illustrate the concept of the structural landscape.


2013 ◽  
Vol 69 (11) ◽  
pp. 1411-1413 ◽  
Author(s):  
Yuko Kawanami ◽  
Hidekazu Tanaka ◽  
Jun-ichi Mizoguchi ◽  
Nobuko Kanehisa ◽  
Gaku Fukuhara ◽  
...  

The absolute configuration has been established of the enantiopureanti-head-to-head cyclodimer of anthracene-2-carboxylic acid (AC) cocrystallized with L-propinol and dichloromethane [systematic name: (S)-2-(hydroxymethyl)pyrrolidin-1-ium (5R,6S,11R,12S)-8-carboxy-5,6,11,12-tetrahydro-5,12:6,11-bis([1,2]benzeno)dibenzo[a,e][8]annulene-2-carboxylate dichloromethane monosolvate], C5H12NO+·C30H19O4−·CH2Cl2. In the crystal structure, the AC dimer interacts with L-prolinol through a nine-membered hydrogen-bonded ring [R22(9)], while the dichloromethane molecule is incorporated to fill the void space. The absolute configuration determined in this study verifies a recent assignment made by comparing theoreticalversusexperimental circular dichroism spectra.


Sign in / Sign up

Export Citation Format

Share Document