scholarly journals Unusual co-crystal of isonicotinamide: the structural landscape in crystal engineering

Author(s):  
Srinu Tothadi ◽  
Gautam R. Desiraju

The idea of a structural landscape is based on the fact that a large number of crystal structures can be associated with a particular organic molecule. Taken together, all these structures constitute the landscape. The landscape includes polymorphs, pseudopolymorphs and solvates. Under certain circumstances, it may also include multi-component crystals (or co-crystals) that contain the reference molecule as one of the components. Under still other circumstances, the landscape may include the crystal structures of molecules that are closely related to the reference molecule. The idea of a landscape is to facilitate the understanding of the process of crystallization. It includes all minima that can, in principle, be accessed by the molecule in question as it traverses the path from solution to the crystal. Isonicotinamide is a molecule that is known to form many co-crystals. We report here a 2:1 co-crystal of this amide with 3,5-dinitrobenzoic acid, wherein an unusual N−H⋯N hydrogen-bonded pattern is observed. This crystal structure offers some hints about the recognition processes between molecules that might be implicated during crystallization. Also included is a review of other recent results that illustrate the concept of the structural landscape.

CrystEngComm ◽  
2021 ◽  
Author(s):  
Guo-Jun Yuan ◽  
Hong Zhou ◽  
Li Li ◽  
Hong Chen ◽  
Xiaoming Ren

Crystal engineering study aims at a better understanding of the correlation between the components and crystal structures, so that the desired crystal structure and functionality will be acquired. In this...


1990 ◽  
Vol 68 (1) ◽  
pp. 193-201 ◽  
Author(s):  
Pascal Dufour ◽  
Yves Dartiguenave ◽  
Michèle Dartiguenave ◽  
Nathalie Dufour ◽  
Anne-Marie Lebuis ◽  
...  

Crystals of 7-azaindole ([Formula: see text], a = 11.312(4), b = 14.960(6), c = 15.509(5) Å, α = 102.86(3), β = 108.78(3), γ = 90.71(3)°, Z = 16, R = 0.052) contain tetrameric units of approximate S4 symmetry, in which the molecules are associated by means of four complementary N—H … N hydrogen bonds. [CH3Hg(7-azaindole)]NO3 ([Formula: see text], a = 7.818(3), b = 7.884(3), c = 9.135(4) Å, α = 97.89(3), β = 109.13(3), γ = 103.28(3)°, Z = 2, R = 0.039) contains well-separated nitrate ions and complex cations in which the methylmercury group is linearly bonded to the pyridine nitrogen atom, whereas the five-membered ring remains protonated. In the neutral [CH3Hg(azaindolate)] complex ([Formula: see text], a = 10.926(10), b = 11.333(8), c = 11.647(10) Å, α = 92.13(8), β = 104.83(9), γ = 111.86(7)°, Z = 6, R = 0.048), methylmercury groups have substituted the N—H proton in the five-membered ring for the three symmetry-independent molecules. Intermolecular secondary Hg … N bonds are found with pyridine nitrogens. Keywords: azaindole, methylmercury, crystal structure.


2017 ◽  
Vol 41 (4) ◽  
pp. 235-238 ◽  
Author(s):  
M. John Plater ◽  
William T.A. Harrison ◽  
Laura M. Machado de los Toyos ◽  
Lewis Hendry

Three examples of 2,4-bis(n-alkylamino)nitrobenzenes have been crystallised (alkyl = pentyl, hexyl and heptyl) and the single crystal structures were determined. The three structures are similar and adopt a cyclic hydrogen bonded hexameric motif. n-Octyl alkyl chains prevented a crystal structure determination owing to disorder.


Author(s):  
K. Shakuntala ◽  
S. Naveen ◽  
N. K. Lokanath ◽  
P. A. Suchetan

The crystal structures of three isomeric compounds of formula C14H13Cl2NO2S, namely 3,5-dichloro-N-(2,3-dimethylphenyl)-benzenesulfonamide (I), 3,5-dichloro-N-(2,6-dimethylphenyl)benzenesulfonamide (II) and 3,5-dichloro-N-(3,5-dimethylphenyl)benzenesulfonamide (III) are described. The molecules of all the three compounds are U-shaped with the two aromatic rings inclined at 41.3 (6)° in (I), 42.1 (2)° in (II) and 54.4 (3)° in (III). The molecular conformation of (II) is stabilized by intramolecular C—H...O hydrogen bonds and C—H...π interactions. The crystal structure of (I) features N—H...O hydrogen-bondedR22(8) loops interconnectedvia C(7) chains of C—H...O interactions, forming a three-dimensional architecture. The structure also features π–π interactions [Cg...Cg= 3.6970 (14) Å]. In (II), N—H...O hydrogen-bondedR22(8) loops are interconnectedviaπ–π interactions [intercentroid distance = 3.606 (3) Å] to form a one-dimensional architecture running parallel to theaaxis. In (III), adjacentC(4) chains of N—H...O hydrogen-bonded molecules running parallel to [010] are connectedviaC—H...π interactions, forming sheets parallel to theabplane. Neighbouring sheets are linkedviaoffset π–π interactions [intercentroid distance = 3.8303 (16) Å] to form a three-dimensional architecture.


Author(s):  
Seik Weng Ng

AbstractDibutytlin oxide condenses with diisopropylammonium hydrogen 2,6-pyridinedicarboxylate to form bis(diisopropylammonium) tris(2,6-pyridinedicarboxylato)bis(dibutylstannate) trihydrate, whose crystal structure consists of a three-dimensional hydrogen-bonded framework of ammonium cations, stannate anions and water molecules. In the dianion, the carboxyl –CO


1999 ◽  
Vol 55 (4) ◽  
pp. 543-553 ◽  
Author(s):  
G. Filippini ◽  
A. Gavezzotti ◽  
J. J. Novoa

The crystal structures of two polymorphs of 4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl 3-oxide (the 2-hydronitronylnitroxide radical, HNN) are analyzed by packing energy criteria. Other unobserved polymorphic crystal structures are generated using a polymorph predictor package and three different force fields, one of which is without explicit Coulomb-type terms. The relative importance of several structural motifs (hydrogen-bonded dimers, shape-interlocking dimers or extended hydrogen-bonded chains) is discussed. As usual, many crystal structures within a narrow energy range are generated by the polymorph predictor, confirming that ab initio crystal-structure prediction is still problematic. Comparisons of powder patterns generated from the atomic coordinates of the X-ray structure and from computational crystal structures confirm that although the energy ranking depends on the force field used, the X-ray structure of the \alpha polymorph was found to be among the most stable ones produced by the polymorph predictor, even using the chargeless force field.


Sign in / Sign up

Export Citation Format

Share Document