Ferrimagnetic-like ordering in a unique three-dimensional coordination polymer featuring mixed azide/carboxylate-bridged trinuclear manganese(ii) clusters as subunitsElectronic supplementary information (ESI) available: the theoretical expressions of the intra-/inter-molecular magnetic interactions, two-dimensional view of 1, temperature dependence of ac magnetic susceptibility and field dependence of magnetization at 1.97 K. See http://www.rsc.org/suppdata/cc/b1/b106314f/

2001 ◽  
pp. 2320-2321 ◽  
Author(s):  
Hong-Ji Chen ◽  
Zong-Wan Mao ◽  
Song Gao ◽  
Xiao-Ming Chen
2014 ◽  
Vol 43 (19) ◽  
pp. 7263-7268 ◽  
Author(s):  
Tiffany M. Smith ◽  
Michael Tichenor ◽  
Yuan-Zhu Zhang ◽  
Kim R. Dunbar ◽  
Jon Zubieta

The three-dimensional [Co3(OH)2(H2O)2(aptet)4] exhibits magnetic properties consistent with a ferrimagnetic chain with the non-compensating resultant moment of one Co(ii) per trinuclear Co(ii) subunit and ac magnetic susceptibility indicative of glassy-like magnetic behavior.


2014 ◽  
Vol 70 (5) ◽  
pp. 517-521
Author(s):  
Yu-Xiu Jin ◽  
Fang Yang ◽  
Li-Min Yuan ◽  
Chao-Guo Yan ◽  
Wen-Long Liu

In poly[[μ3-2,2′-(disulfanediyl)dibenzoato-κ5 O:O,O′:O′′,O′′′](1,10-phenanthroline-κ2 N,N′)cadmium(II)], [Cd(C14H8O4S2)(C12H8N2)] n , the asymmetric unit contains one CdII cation, one 2,2′-(disulfanediyl)dibenzoate anion (denoted dtdb2−) and one 1,10-phenanthroline ligand (denoted phen). Each CdII centre is seven-coordinated by five O atoms of bridging/chelating carboxylate groups from three dtdb2− ligands and by two N atoms from one phen ligand, forming a distorted pentagonal–bipyramidal geometry. The CdII cations are bridged by dtdb2− anions to give a two-dimensional (4,4) layer. The layers are stacked to generate a three-dimensional supramolecular architecture via a combination of aromatic C—H...π and π–π interactions. The thermogravimetric and luminescence properties of this compound were also investigated.


2020 ◽  
Vol 6 (4) ◽  
pp. 45
Author(s):  
Amit Kumar Mondal ◽  
Arpan Mondal ◽  
Sanjit Konar

A one-dimensional coordination polymer was synthesized employing hepta-coordinate CoII as nodes and dicyanamide as linkers. Detailed direct current (DC) and alternating current (AC) magnetic susceptibility measurements reveal the presence of field-induced slow magnetic relaxation behavior of the magnetically isolated seven-coordinate CoII center with an easy-plane magnetic anisotropy. Detailed ab initio calculations were performed to understand the magnetic relaxation processes. To our knowledge, the reported complex represents the first example of slow magnetic relaxation in a one-dimensional coordination polymer constructed from hepta-coordinate CoII nodes and dicyanamide linkers.


2009 ◽  
Vol 65 (3) ◽  
pp. m118-m120
Author(s):  
Olha Sereda ◽  
Helen Stoeckli-Evans

The title coordination polymer, [Cd3Co2(CN)12(C2H8N2)4]n, has an infinite two-dimensional network structure. The asymmetric unit is composed of two crystallographically independent CdIIatoms, one of which is located on a twofold rotation axis. There are two independent ethylenediamine (en) ligands, one of which bis-chelates to the Cd atom that sits in a general position, while the other bridges this Cd atom to that sitting on the twofold axis. The Cd atom located on the twofold rotation axis is linked to four equivalent CoIIIatomsviacyanide bridges, while the Cd atom that sits in a general position is connected to three equivalent CoIIIatomsviacyanide bridges. In this way, a series of trinuclear, tetranuclear and pentanuclear macrocycles are linked to form a two-dimensional network structure lying parallel to thebcplane. In the crystal structure, these two-dimensional networks are linkedviaN—H...N hydrogen bonds involving an en NH2H atom and a cyanide N atom, leading to the formation of a three-dimensional structure. This coordination polymer is only the second example involving a cyanometallate where the en ligand is present in both chelating and bridging coordination modes.


2018 ◽  
Vol 74 (5) ◽  
pp. 599-603 ◽  
Author(s):  
Yan-Ju Liu ◽  
Di Cheng ◽  
Ya-Xue Li ◽  
Xiang-Ru Meng ◽  
Huai-Xia Yang

In recent years, N-heterocyclic carboxylate ligands have attracted much interest in the preparation of new coordination polymers since they contain N-atom donors, as well as O-atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. A new two-dimensional coordination polymer, namely poly[[μ3-2,2′-(1,2-phenylene)bis(4-carboxy-1H-imidazole-5-carboxylato)-κ6 O 4,N 3,N 3′,O 4′:O 5:O 5′]manganese(II)], [Mn(C16H8N4O8)] n or [Mn(H4Phbidc)] n , has been synthesized by the reaction of Mn(OAc)2·4H2O (OAc is acetate) with 2,2′-(1,2-phenylene)bis(1H-imidazole-4,5-dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, each MnII ion is six-coordinated by two N atoms from one H4Phbidc2− ligand and by four O atoms from three H4Phbidc2− ligands, forming a significantly distorted octahedral MnN2O4 coordination geometry. The MnII ions are linked by hexadentate H4Phbidc2− ligands, leading to a two-dimensional structure parallel to the ac plane. In the crystal, adjacent layers are further connected by N—H...O hydrogen bonds, forming a three-dimensional structure in the solid state.


1982 ◽  
Vol 20 ◽  
Author(s):  
M Elahy ◽  
G. Dresselhaus

ABSTRACTPrecise measurements of the temperature dependence of the magnetic susceptibility for stage 2 and 5 graphite-CoCl2 intercalation compounds are reported. Comparison of the experimental results with theoretical calculations based on a two-dimensional planar model show agreement with theory, suggesting that graphite intercalation compounds represent ideal two-dimensional magnetic systems.


2000 ◽  
pp. 717-718 ◽  
Author(s):  
Lei Zhang ◽  
Peng Cheng ◽  
Liang-Fu Tang ◽  
Zong-Hui Jiang ◽  
Dai-Zheng Liao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document