magnetic behavior
Recently Published Documents


TOTAL DOCUMENTS

2992
(FIVE YEARS 436)

H-INDEX

84
(FIVE YEARS 9)

Author(s):  
Michel Raimundo de Brito ◽  
Fernanda de Souza Silva ◽  
Marcio Assolin Correa ◽  
Felipe Bohn ◽  
Rodolfo Bezerra da Silva ◽  
...  

Author(s):  
Sonu Chhillar ◽  
Kaustav Mukherjee ◽  
C. S. Yadav

Abstract The 6H-perovskites Ba3RRu2O9 (R = rare earth element) demonstrate the magnetodielectric (MD) coupling as a manifestation of 4d - 4f magnetic interactions. Here, we have reported a detailed study of the structural, magnetic, heat capacity, and MD properties of the 6H-perovskite Ba3GdRu2O9. The signature of long-range antiferromagnetic (AFM) ordering at ~14.8 K (TN) is evident from the magnetization and heat capacity studies. The TN shifts towards the lower temperature side, apart from splitting in two with the application of the magnetic field. Field-dependent magnetization at 2 K shows three metamagnetic transitions with the opening of small hysteresis in different regions. A new transition at T1 emerges after the onset of the first metamagnetic transition. Complex magnetic behavior is observed in different magnetic field regions whereas these field regions themselves vary with the temperature. Dielectric response recorded at zero and 80 kOe field exhibits the development of MD coupling well above TN. The MD coupling (~ 4.5 % at 10 K) is enhanced by 25 % as compared to the Dy counterpart. Effect of complex magnetic behavior is also conveyed in the MD results where the maximum value of MD coupling is observed in the vicinity of 10 K (onset of T1) and near the second metamagnetic transition. Our investigation suggests that both Gd and Ru moments align simultaneously at TN. Short-range magnetic correlations are possibly responsible for MD coupling above TN.


Author(s):  
Hüseyin Yıldırım

Gupta and Density Functional Theory (DFT) calculations were performed to investigate of structural and magnetic behaviors of 19 atom FenRh[Formula: see text] ([Formula: see text]–19) nanoalloys. A double icosahedron structure was considered for FenRh[Formula: see text] ([Formula: see text]–19) nanoalloys. Significantly, the effects of Fe atom addition on the chemical ordering, stability and total magnetic moments of the nanoalloys were investigated. Local optimization results at the Gupta level show that the Fe atoms are located in the center of the double icosahedron structure and finally in the equatorial region on the surface. The mixing energy analysis obtained that Fe[Formula: see text]Rh7 and Fe4Rh[Formula: see text] nanoalloys are the most stable compositions at Gupta and DFT levels, respectively. It was found that FenRh[Formula: see text] ([Formula: see text]–19) nanoalloys are energetically suitable for mixing at both Gupta and DFT levels. Also, the bond order parameter result is compatible with the mixing energy analysis result. The total magnetic moments of the FenRh[Formula: see text] ([Formula: see text]–19) nanoalloys increase with the addition of the Fe atom, which is a ferromagnetic metal.


2022 ◽  
Author(s):  
Yuri Mikhlin ◽  
Roman Borisov ◽  
Sergey Vorobyev ◽  
Yevgeny Tomashevich ◽  
Alexander Romanchenko ◽  
...  

We introduce here a multifunctional material composed of alternating atomic sulfide sheets close to CuFeS2 and Mg-based hydroxide ones (valleriite), which are assembled due to their electric charges of opposite sign. Valleriite particles of 50-200 nm in the lateral size and 10-20 nm thick were synthesized via a simple hydrothermal pathway using various concentrations of precursors and dopants, and examined with XRD, TEM, EDS, X-ray photoelectron spectroscopy, reflection electron energy loss spectroscopy (REELS), Mössbauer, Raman and UV-vis-NIR spectroscopies, magnetic, dynamic light scattering, zeta potential measurements. The electronic, magnetic and optical characteristics are found to be critically dependent of the charge (electron density) at the narrow-gap sulfide layers containing Cu+ and Fe3+ cations, and can be tuned via the composition of hydroxide part. Particularly, substitution of Mg2+ with Al3+ increases the negative charge of the hydroxide layers and reduces the content of Fe3+-OH centers (10-45% of total iron); the effects of Cr and Co dopants entering both layers are more complicated. Mössbauer doublets of paramagnetic Fe3+ detected at room temperature transform to several Zeeman sextets at 4.2 K; the hyperfine fields up to 500 kOe and complex magnetic behavior, but not pure paramagnetism or antiferromagnetism, were observed for valleriites with the higher positive charge of the sulfide sheets, probably due to the depopulation of the minority-spin 3d states of S-bonded Fe3+ ions. Aqueous colloids of valleriite show optical absorption at 500 - 750 nm, which, along with the peaks at the same energies in REELS, may arise due to quasi-static dielectric resonance involving the vacant Fe 3d band and being dependent on the composition of both layers too. These and other findings call attention to the of valleriites as a new rich family of 2D materials for a variety of potential applications.


Author(s):  
Natalia Lindner ◽  
Zbigniew Śniadecki ◽  
Mieszko Kołodziej ◽  
Jean-Marc Grenèche ◽  
Jozef Marcin ◽  
...  

AbstractA magnetocaloric effect with wide tunability was observed in melt-spun amorphous Gd65Fe15-xCo5+xAl10Si5 (x = 0, 5, 10) alloys of different Fe/Co ratios. Their magnetic properties were compared with those of the previously investigated parent alloy Gd65Fe10Co10Al15. The glassy structure of the melt-spun samples was confirmed by X-ray diffraction (XRD) and 57Fe Mössbauer spectrometry. Their Curie temperatures (TC) were between 155 and 195 K and increased significantly with decreasing Co content. The highest value of the magnetic entropy change ΔSM = − 6.8 J/kg K was obtained for Gd65Fe5Co15Al10Si5, when the magnetic field was increased from 0 to 5 T. Refrigerant capacity (RC) takes values close to 700 J/kg for the whole series of the alloys. The occurrence of the second-order phase transition and the conformity of the magnetic behavior with the mean field model were concluded on the basis of the analysis of the universal curves and the values of the exponent n (ΔSM ∝ Hn). Graphical abstract


2022 ◽  
pp. 163759
Author(s):  
Roman A. Khalaniya ◽  
Valeriy Yu. Verchenko ◽  
Alexei V. Sobolev ◽  
Igor A. Presniakov ◽  
Zheng Wei ◽  
...  

2022 ◽  
pp. 1-1
Author(s):  
Flavia Domingues De Sousa ◽  
Alexandre Battiston ◽  
Farid Meibody-Tabar ◽  
Serge Pierfederici
Keyword(s):  

Author(s):  
S.S. Ali ◽  
C. Cheng ◽  
Saroj Parajuli ◽  
Xiaoming Zhang ◽  
Jiafeng Feng ◽  
...  

2021 ◽  
Vol 23 (6) ◽  
pp. 439-444
Author(s):  
Manar Nesser ◽  
Olivier Maloberti ◽  
Elias Salloum ◽  
Julien Dupuy ◽  
Jérôme Fortin

Improving the performance of electrical steels within the magnetic circuits is essential to save energy. The domain refinement through local surface treatment by laser is an effective technique to reduce the iron losses in grain-oriented iron silicon steels. To interpret the mechanism of this technique, we have quantitatively studied the impact of nanosecond pulse laser treatment on the magnetic properties of grain-oriented Fe(3%wt)Si sheets. We measured the total power loss and apparent permeability of the samples using a Single-Sheet Tester (SST). The laser treatment resulted in a loss reduction of up to 24% compared to the average power loss of standard samples at 50 Hz. At mid-induction levels, the reduction was also accompanied by an improvement in apparent permeability. A dynamic magnetic behavior law was used to identify a dynamic property Λ including information on density, surface area and wall mobility and another internal permeability property µ representative of static field and magnetization characteristics. Lastly, we presented the behavior of these properties under different laser treatment.


Sign in / Sign up

Export Citation Format

Share Document