Solution phase, solid state and computational structural studies of the 2-aryl-3-bromoquinolin-4(1H)-one derivatives1

Author(s):  
Malose J. Mphahlele ◽  
Manuel A. Fernandes ◽  
Ahmed M. El-Nahas ◽  
Henrik Ottosson ◽  
Stephen M. Ndlovu ◽  
...  
1992 ◽  
Vol 114 (11) ◽  
pp. 4144-4150 ◽  
Author(s):  
David A. Burwell ◽  
Kathleen G. Valentine ◽  
Jozef H. Timmermans ◽  
Mark E. Thompson

2010 ◽  
Vol 104 (7) ◽  
pp. 750-758 ◽  
Author(s):  
Lorenzo Pellerito ◽  
Cristina Prinzivalli ◽  
Girolamo Casella ◽  
Tiziana Fiore ◽  
Ornella Pellerito ◽  
...  

1992 ◽  
Vol 70 (11) ◽  
pp. 2809-2817 ◽  
Author(s):  
Wolfgang Kliegel ◽  
Gottfried Lubkowitz ◽  
Steven J. Rettig ◽  
James Trotter

The preparation of the N-(2-hydroxypropyl)-N-alkylhydroxylamines, 6a (R = CH3) and 6b (R = CH2Ph), and their reactions with phenylboronic acid are described. Regardless of the molar ratios of reactants employed, the reaction with 6b leads to the 1:2 condensate 1-benzyl-7-methyl-3,5-diphenyl-2,4,6-trioxa-1-azonia-3-bora-5-boratabicyclo[3.3.0]octane, 7, while that with 6a gives rise to the 1:1 condensate 1,4,6,9-tetramethyl-2,7-diphenyl-3,8,11,12-tetraoxa-1,6-diazonia-2,7-diboratatricyclo[5.3.1. 12,6]dodecane, 11 (the cyclic BONBON dimer of 4,6-dimethyl-2-phenyl-1,3-dioxa-4-aza-2-boracyclohexane, 9). Compounds 7 and 11 both crystallize in the triclinic space group [Formula: see text]: for 7; a = 13.126(1), b = 15.337(1), c = 10.9469(5) Å, α = 91.727(5), β = 104.647(5), γ = 72.922(7)°, Z = 4; and for 11; a = 9.0807(4), b = 9.1653(3), c = 6.4876(2) Å, α = 97.708(3), β = 108.830(3), γ = 89.188(4)°, Z = 1. The structures were solved by direct methods and were refined by full-matrix least-squares procedures to R = 0.038 and 0.032 for 5879 and 1827 reflections with I ≥ 3σ(F2), respectively. Compound 7 has the expected bicyclic pyroboronate structure, but represents the first reported N-substituted example of this type of compound. Bond lengths involving boron in 7 are (C) O—B(sp3) = 1.428(2) and 1.420(2), (B)O—B(sp3) = 1.472(2) and 1.468(2), N—B(sp3) = 1.737(2) and 1.762(2), C(phenyl)—B(sp3) = 1.588(2) and 1.584(2), (N)O—B(sp2) = 1.402(2) and 1.404(2), (B)O—B(sp2) = 1.331(2) and 1.329(2), C(phenyl)—B(sp2) = 1.555(3) and 1.553(2) Å. The X-ray analysis establishes a centrosymmetric, twofold N → B coordinated, dimeric structure in the solid state for 11 in which each B—O—N segment of a central six-membered BONBON ring is bridged by an O—C—C moiety. Compound 11 represents the first fully characterized example of a new type of "BONBON" compound. Bond distances involving the boron atom are (N)O—B = 1.465(1), (C)O—B = 1.428(1), N—B = 1.695(2), and C(phenyl)—B = 1.607(2) Å. Spectroscopic evidence indicates that in solution and in the gas phase this material exists predominantly as the monomer 9.


2006 ◽  
Vol 21 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Abderrahim Aatiq ◽  
My Rachid Tigha ◽  
Rabia Hassine ◽  
Ismael Saadoune

Crystallographic structures of two new orthophosphates Ca0.50SbFe(PO4)3 and CaSb0.50Fe1.50(PO4)3 obtained by conventional solid state reaction techniques at 900 °C, were determined at room temperature from X-ray powder diffraction using Rietveld analysis. The two compounds belong to the Nasicon structural family. The space group is R3 for Ca0.50SbFe(PO4)3 and R3c for CaSb0.50Fe1.50(PO4)3. Hexagonal cell parameters for Ca0.50SbFe(PO4)3 and CaSb0.50Fe1.50(PO4)3 are: a=8.257(1) Å, c=22.276(2) Å, and a=8.514(1) Å, c=21.871(2) Å, respectively. Ca2+ and vacancies in {[Ca0.50]3a[◻0.50]3b}M1SbFe(PO4)3 are ordered within the two positions, 3a and 3b, of M1 sites. Structure refinements show also a quasi-ordered distribution of Sb5+ and Fe3+ ions within the Nasicon framework. Thus, in {[Ca0.50]3a[◻0.50]3b}M1SbFe(PO4)3, each Ca(3a)O6 octahedron shares two faces with two Fe3+O6 octahedra and each vacancy (◻(3b)O6) site is located between two Sb5+O6 octahedra. In [Ca]M1Sb0.50Fe1.50(PO4)3 compound (R3c space group), all M1 sites are occupied by Ca2+ and the Sb5+ and Fe3+ ions are randomly distributed within the Nasicon framework.


Sign in / Sign up

Export Citation Format

Share Document