solid state structures
Recently Published Documents


TOTAL DOCUMENTS

774
(FIVE YEARS 89)

H-INDEX

47
(FIVE YEARS 5)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jens Rudlof ◽  
Beate Neumann ◽  
Hans-Georg Stammler ◽  
Norbert W. Mitzel

Abstract Based on the previously described bifunctional Lewis acid with a functional distance of the boron functions of 4.918(2) Å, the development of a further bifunctional, boron-containing Lewis acid with a wider functional distance is demonstrated. Again, a stannylated precursor was used and the Lewis-acidic boron functions were introduced by means of tin-boron exchange. The general suitability of this class of compounds for the formation of host-guest-complexes is demonstrated by NMR experiments and by solid-state structures using pyridine and TMPD (N 1,N 1,N 4,N 4-tetramethylbenzene-1,4-diamine) as Lewis basic guests. The influence of traces of moisture on the boron-containing, bifunctional Lewis acids was investigated by the structure elucidation of a decomposition product.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 264
Author(s):  
Muhammad Tayyab Noman ◽  
Nesrine Amor ◽  
Azam Ali ◽  
Stanislav Petrik ◽  
Radek Coufal ◽  
...  

The term aerogel is used for unique solid-state structures composed of three-dimensional (3D) interconnected networks filled with a huge amount of air. These air-filled pores enhance the physicochemical properties and the structural characteristics in macroscale as well as integrate typical characteristics of aerogels, e.g., low density, high porosity and some specific properties of their constituents. These characteristics equip aerogels for highly sensitive and highly selective sensing and energy materials, e.g., biosensors, gas sensors, pressure and strain sensors, supercapacitors, catalysts and ion batteries, etc. In recent years, considerable research efforts are devoted towards the applications of aerogels and promising results have been achieved and reported. In this thematic issue, ground-breaking and recent advances in the field of biomedical, energy and sensing are presented and discussed in detail. In addition, some other perspectives and recent challenges for the synthesis of high performance and low-cost aerogels and their applications are also summarized.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7297
Author(s):  
Sergey A. Anufriev ◽  
Akim V. Shmal’ko ◽  
Kyrill Yu. Suponitsky ◽  
Igor B. Sivaev

A simple and efficient method was developed for the one-pot synthesis of 3-aryl derivatives of ortho-carborane with sensitive functional groups using 3-iodo-ortho-carborane and aryl zinc bromides that were generated in situ. A series of 3-aryl-ortho-carboranes, including those containing nitrile and ester groups, 3-RC6H4-1,2-C2B10H11 (R = p-Me, p-NMe2, p-OCH2OMe, p-OMe, o-CN, p-CN, o-COOEt, m-COOEt, p-COOEt) was synthesized using this approach. The solid-state structures of 3-RC6H4-1,2-C2B10H11 (R = p-OMe, o-CN, and p-CN) were determined by single crystal X-ray diffraction. The intramolecular hydrogen bonding involving the ortho-substituents of the aryl ring and the CH and BH groups of carborane was discussed.


Inorganics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 86
Author(s):  
Alasdair Formanuik ◽  
Fabrizio Ortu ◽  
Iñigo J. Vitorica-Yrezabal ◽  
Floriana Tuna ◽  
Eric J. L. McInnes ◽  
...  

Tripodal multidentate ligands have become increasingly popular in f-element chemistry for stabilizing unusual bonding motifs and supporting small molecule activation processes. The steric and electronic effects of ligand donor atom substituents have proved crucial in both of these applications. In this study we functionalized the previously reported tris-anilide ligand {tacn(SiMe2NPh)3} (tacn = 1,3,7-triazacyclononane) to incorporate substituted aromatic rings, with the aim of modifying f-element complex solubility and ligand steric effects. We report the synthesis of two proligands, {tacn(SiMe2NHAr)3} (Ar = C6H3Me2-3,5 or C6H4Me-4), and their respective group 1 transfer agents—{tacn(SiMe2NKAr)3}, M(III) complexes [M{tacn(SiMe2NAr)3}] for M = La and U, and U(IV) complexes [M{tacn(SiMe2NAr)3}(Cl)]. These compounds were characterized by multinuclear NMR and FTIR spectroscopy and elemental analysis. The paramagnetic uranium complexes were also characterized by solid state magnetic measurements and UV/Vis/NIR spectroscopy. U(III) complexes were additionally studied by EPR spectroscopy. The solid state structures of all f-block complexes were authenticated by single-crystal X-ray diffraction (XRD), together with a minor byproduct [U{tacn(SiMe2NC6H4Me-4)3}(I)]. Comparisons of the characterization data of our f-element complexes with similar literature examples containing the {tacn(SiMe2NPh)3} ligand set showed minor changes in physicochemical properties resulting from the different aromatic ring substitution patterns we investigated.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6731
Author(s):  
Haruki Inoue ◽  
Yuga Yamashita ◽  
Yoshiki Ozawa ◽  
Toshikazu Ono ◽  
Masaaki Abe

Two hexanuclear paddlewheel-like clusters appending six carboxylic-acid pendants have been isolated with the inclusion of polar solvent guests: [Cu6(Hmna)6]·7DMF (1·7DMF) and [Ag6(Hmna)6]·8DMSO (2·8DMSO), where H2mna = 2-mercaptonicotininc acid, DMF = N,N’-dimethylformamide, and DMSO = dimethyl sulfoxide. The solvated clusters, together with their fully desolvated forms 1 and 2, have been characterized by FTIR, UV–Vis diffuse reflectance spectroscopy, TG-DTA analysis, and DFT calculations. Crystal structures of two solvated clusters 1·7DMF and 2·8DMSO have been unambiguously determined by single-crystal X-ray diffraction analysis. Six carboxylic groups appended on the clusters trap solvent guests, DMF or DMSO, through H-bonds. As a result, alternately stacked lamellar architectures comprising of a paddlewheel cluster layer and H-bonded solvent layer are formed. Upon UV illumination (λex = 365 nm), the solvated hexasilver(I) cluster 2·8DMSO gives intense greenish-yellow photoluminescence in the solid state (λPL = 545 nm, ΦPL = 0.17 at 298 K), whereas the solvated hexacopper(I) cluster 1·7DMF displays PL in the near-IR region (λPL = 765 nm, ΦPL = 0.38 at 298 K). Upon complete desolvation, a substantial bleach in the PL intensity (ΦPL < 0.01) is observed. The desorption–sorption response was studied by the solid-state PL spectroscopy. Non-covalent interactions in the crystal including intermolecular H-bonds, CH···π interactions, and π···π stack were found to play decisive roles in the creation of the lamellar architectures, small-molecule trap-and-release behavior, and guest-induced luminescence enhancement.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Michał Terlecki ◽  
Iwona Justyniak ◽  
Michał K. Leszczyński ◽  
Janusz Lewiński

AbstractMetal-oxo clusters can serve as directional and rigid building units of coordination and noncovalent supramolecular assemblies. Therefore, an in-depth understanding of their multi-faceted chemistry is vital for the development of self-assembled solid-state structures of desired properties. Here we present a comprehensive comparative structural analysis of isostructural benzoate, benzamidate, and new benzamidinate zinc-oxo clusters incorporating the [O,O]-, [O,NH]- and [NH,NH]-anchoring donor centers, respectively. We demonstrated that the NH groups in the proximal secondary coordination sphere are prone to the formation of intermolecular hydrogen bonds, which affects the packing of clusters in the crystal structure. Coordination sphere engineering can lead to the rational design of new catalytic sites and novel molecular building units of supramolecular assemblies.


Inorganics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 68
Author(s):  
Mohammed Altahan ◽  
Michael Beckett ◽  
Simon Coles ◽  
Peter Horton

Several oxidoborates, self-assembled from B(OH)3 and templated by cationic Ni(II) coordination compounds, were synthesized by crystallization from aqueous solution. These include the ionic compounds trans-[Ni(NH3)4(H2O)2][B4O5(OH)4].H2O (1), s-[Ni(dien)2][B5O6(OH)4]2 (dien = N-(2-aminoethyl)-1,2-ethanediamine (2), trans-[Ni(dmen)2(H2O)2] [B5O6(OH)4]2.2H2O (dmen = N,N-dimethyl-1,2-diaminoethane) (3), [Ni(HEen)2][B5O6(OH)4]2 (HEen = N-(2-hydroxyethyl)-1,2-diaminoethane) (4), [Ni(AEN)][B5O6(OH)4].H2O (AEN = 1-(3-azapropyl) -2,4-dimethyl-1,5,8-triazaocta-2,4-dienato(1-)) (5), trans-[Ni(dach)2(H2O)2][Ni(dach)2] [B7O9(OH)5]2.4H2O (dach = 1,2-diaminocyclohexane) (6), and the neutral species trans-[Ni(en)(H2O)2{B6O7(OH)6}].H2O (7) (en = 1,2-diaminoethane), and [Ni(dmen)(H2O){B6O7(OH)6}].5H2O (8). Compounds 1–8 were characterized by single-crystal XRD studies and by IR spectroscopy and 2, 4–7 were also characterized by thermal (TGA/DSC) methods and powder XDR studies. The solid-state structures of all compounds show extensive stabilizing H-bond interactions, important for their formation, and also display a range of gross structural features: 1 has an insular tetraborate(2-) anion, 2–5 have insular pentaborate(1-) anions, 6 has an insular heptaborate(2-) anion (‘O+’ isomer), whilst 7 and 8 have hexaborate(2-) anions directly coordinated to their Ni(II) centers, as bidentate or tridentate ligands, respectively. The Ni(II) centers are either octahedral (1–4, 7, 8) or square-planar (5), and compound 6 has both octahedral and square-planar metal geometries present within the structure as a double salt. Magnetic susceptibility measurements were undertaken on all compounds.


Inorganics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 52
Author(s):  
Maximilian Dehmel ◽  
Helmar Görls ◽  
Robert Kretschmer

Dianionic N,N-chelating ligands play a crucial role in coordination chemistry, but reports on related complexes remain limited to certain types of ligands. In here, the reactions of two diprotic ligands, i.e., a biguanide and a carbothiamide, with trimethylaluminium, are reported, which give rise to mono- and dinuclear aluminium(III) complexes. In addition, single deprotonation of the diprotic biguanide using potassium bis(trimethylsilyl)amide gives rise to a one-dimensional coordination polymer. All complexes have been fully characterized, and their solid-state structures were determined by single crystal X-ray diffraction analysis.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 756
Author(s):  
Silvija Mrkonja ◽  
Edi Topić ◽  
Mirna Mandarić ◽  
Dominique Agustin ◽  
Jana Pisk

Molybdenum compounds containing benzaldehyde-based hydrazones were obtained. The reaction in MeOH resulted with monomeric Mo complexes, [MoO2(L)(MeOH)], while the reaction in dichloromethane (DCM) provided oligomeric complexes, [MoO2(L)]n. The solid-state structures of the obtained compounds were investigated through Infrared Spectroscopy - Attenuated Total Reflection (IR-ATR), Thermogravimetric analysis (TGA), and via X-ray diffraction. The prepared molybdenum species were employed as cyclooctene epoxidation catalysts. TBHP (tert-butylhydroperoxide) in water and TBHP in decane were employed and compared as oxidants, with 0.25 mol% [Mo]. The catalyst activity and selectivity towards epoxide is >90% for all the reactions. The results have been linked to theoretical calculations, showing the importance of the first step, i.e., the transformation of [MoO2(L)(MeOH)] into the pentacoordinate [MoO2(L)].


Sign in / Sign up

Export Citation Format

Share Document