Polymer matrix dependence of conformational dynamics within a π-stacked perylenediimide dimer and trimer revealed by single molecule fluorescence spectroscopy

2012 ◽  
Vol 14 (6) ◽  
pp. 2001 ◽  
Author(s):  
Hyejin Yoo ◽  
Hee Won Bahng ◽  
Michael R. Wasielewski ◽  
Dongho Kim
2020 ◽  
Author(s):  
Franziska Zosel ◽  
Andrea Holla ◽  
Benjamin Schuler

Single-molecule fluorescence spectroscopy has become an important technique for studying the conformational dynamics and folding of proteins. A key step for performing such experiments is the availability of high-quality samples. Here we describe the practical details of a simple and widely applicable strategy for preparing proteins that are site-specifically labeled with a donor and an acceptor dye for single-molecule Förster resonance energy transfer (FRET) experiments. The method is based on introducing two cysteine residues that are labeled with maleimide-functionalized fluorophores, combined with high-resolution chromatography. We discuss how to optimize site-specific labeling even in the absence of orthogonal coupling chemistry and present purification strategies that are suitable for samples ranging from intrinsically disordered proteins to large folded proteins. We also discuss common problems in protein labeling, how to avoid them, and how to stringently control sample quality.<br>


2020 ◽  
Author(s):  
Franziska Zosel ◽  
Andrea Holla ◽  
Benjamin Schuler

Single-molecule fluorescence spectroscopy has become an important technique for studying the conformational dynamics and folding of proteins. A key step for performing such experiments is the availability of high-quality samples. Here we describe the practical details of a simple and widely applicable strategy for preparing proteins that are site-specifically labeled with a donor and an acceptor dye for single-molecule Förster resonance energy transfer (FRET) experiments. The method is based on introducing two cysteine residues that are labeled with maleimide-functionalized fluorophores, combined with high-resolution chromatography. We discuss how to optimize site-specific labeling even in the absence of orthogonal coupling chemistry and present purification strategies that are suitable for samples ranging from intrinsically disordered proteins to large folded proteins. We also discuss common problems in protein labeling, how to avoid them, and how to stringently control sample quality.<br>


2004 ◽  
Vol 108 (20) ◽  
pp. 6479-6484 ◽  
Author(s):  
Meindert A. van Dijk ◽  
Lukas C. Kapitein ◽  
Joost van Mameren ◽  
Christoph F. Schmidt ◽  
Erwin J. G. Peterman

Sign in / Sign up

Export Citation Format

Share Document