photon antibunching
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 17)

H-INDEX

35
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huan Zhao ◽  
Michael T. Pettes ◽  
Yu Zheng ◽  
Han Htoon

AbstractQuantum emitters (QEs) in two-dimensional transition metal dichalcogenides (2D TMDCs) have advanced to the forefront of quantum communication and transduction research. To date, QEs capable of operating in O-C telecommunication bands have not been demonstrated in TMDCs. Here we report site-controlled creation of telecom QEs emitting over the 1080 to 1550 nm telecommunication wavelength range via coupling of 2D molybdenum ditelluride (MoTe2) to strain inducing nano-pillar arrays. Hanbury Brown and Twiss experiments conducted at 10 K reveal clear photon antibunching with 90% single-photon purity. The photon antibunching can be observed up to liquid nitrogen temperature (77 K). Polarization analysis further reveals that while some QEs display cross-linearly polarized doublets with ~1 meV splitting resulting from the strain induced anisotropic exchange interaction, valley degeneracy is preserved in other QEs. Valley Zeeman splitting as well as restoring of valley symmetry in cross-polarized doublets are observed under 8 T magnetic field.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gordon J. Hedley ◽  
Tim Schröder ◽  
Florian Steiner ◽  
Theresa Eder ◽  
Felix J. Hofmann ◽  
...  

AbstractThe particle-like nature of light becomes evident in the photon statistics of fluorescence from single quantum systems as photon antibunching. In multichromophoric systems, exciton diffusion and subsequent annihilation occurs. These processes also yield photon antibunching but cannot be interpreted reliably. Here we develop picosecond time-resolved antibunching to identify and decode such processes. We use this method to measure the true number of chromophores on well-defined multichromophoric DNA-origami structures, and precisely determine the distance-dependent rates of annihilation between excitons. Further, this allows us to measure exciton diffusion in mesoscopic H- and J-type conjugated-polymer aggregates. We distinguish between one-dimensional intra-chain and three-dimensional inter-chain exciton diffusion at different times after excitation and determine the disorder-dependent diffusion lengths. Our method provides a powerful lens through which excitons can be studied at the single-particle level, enabling the rational design of improved excitonic probes such as ultra-bright fluorescent nanoparticles and materials for optoelectronic devices.


2021 ◽  
Vol 92 (1) ◽  
pp. 013105
Author(s):  
Shaojie Liu ◽  
Xing Lin ◽  
Feng Liu ◽  
Hairui Lei ◽  
Wei Fang ◽  
...  

2021 ◽  
Author(s):  
Frank Bello ◽  
Nuttawut Kongsuwan ◽  
Geoffrey Keating ◽  
John F. Donegan ◽  
Ortwin Hess

2020 ◽  
pp. 2001596
Author(s):  
Ivan Yu. Eremchev ◽  
Aleksandr O. Tarasevich ◽  
Jun Li ◽  
Andrey V. Naumov ◽  
Ivan G. Scheblykin
Keyword(s):  

2020 ◽  
Vol 6 (37) ◽  
pp. eaba8526 ◽  
Author(s):  
H. Baek ◽  
M. Brotons-Gisbert ◽  
Z. X. Koong ◽  
A. Campbell ◽  
M. Rambach ◽  
...  

Photon antibunching, a hallmark of quantum light, has been observed in the correlations of light from isolated atomic and atomic-like solid-state systems. Two-dimensional semiconductor heterostructures offer a unique method to create a quantum light source: Moiré trapping potentials for excitons are predicted to create arrays of quantum emitters. While signatures of moiré-trapped excitons have been observed, their quantum nature has yet to be confirmed. Here, we report photon antibunching from single moiré-trapped interlayer excitons in a heterobilayer. Via magneto-optical spectroscopy, we demonstrate that the discrete anharmonic spectra arise from bound band-edge electron-hole pairs trapped in moiré potentials. Last, we exploit the large permanent dipole of interlayer excitons to achieve large direct current (DC) Stark tuning up to 40 meV. Our results confirm the quantum nature of moiré-confined excitons and open opportunities to investigate their inhomogeneity and interactions between the emitters or energetically tune single emitters into resonance with cavity modes.


Sign in / Sign up

Export Citation Format

Share Document