slow dynamics
Recently Published Documents


TOTAL DOCUMENTS

648
(FIVE YEARS 82)

H-INDEX

59
(FIVE YEARS 6)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 104
Author(s):  
Gerardo Ayala-Jaimes ◽  
Gilberto Gonzalez-Avalos ◽  
Noe Barrera Gallegos ◽  
Aaron Padilla Garcia ◽  
Juancarlos Mendez-B

One of the most important features in the analysis of the singular perturbation methods is the reduction of models. Likewise, the bond graph methodology in dynamic system modeling has been widely used. In this paper, the bond graph modeling of nonlinear systems with singular perturbations is presented. The class of nonlinear systems is the product of state variables on three time scales (fast, medium, and slow). Through this paper, the symmetry of mathematical modeling and graphical modeling can be established. A main characteristic of the bond graph is the application of causality to its elements. When an integral causality is assigned to the storage elements that determine the state variables, the dynamic model is obtained. If the storage elements of the fast dynamics have a derivative causality and the storage elements of the medium and slow dynamics an integral causality is assigned, a reduced model is obtained, which consists of a dynamic model for the medium and slow time scales and a stationary model of the fast time scale. By applying derivative causality to the storage elements of the fast and medium dynamics and an integral causality to the storage elements of the slow dynamics, the quasi-steady-state model for the slow dynamics is obtained and stationary models for the fast and medium dynamics are defined. The exact and reduced models of singularly perturbed systems can be interpreted as another symmetry in the development of this paper. Finally, the proposed methodology was applied to a system with three time scales in a bond graph approach, and simulation results are shown in order to indicate the effectiveness of the proposed methodology.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
J. Kober ◽  
A.S. Gliozzi ◽  
M. Scalerandi ◽  
M. Tortello

2021 ◽  
Vol 15 ◽  
Author(s):  
Tomoki Kurikawa ◽  
Kunihiko Kaneko

Sequential transitions between metastable states are ubiquitously observed in the neural system and underlying various cognitive functions such as perception and decision making. Although a number of studies with asymmetric Hebbian connectivity have investigated how such sequences are generated, the focused sequences are simple Markov ones. On the other hand, fine recurrent neural networks trained with supervised machine learning methods can generate complex non-Markov sequences, but these sequences are vulnerable against perturbations and such learning methods are biologically implausible. How stable and complex sequences are generated in the neural system still remains unclear. We have developed a neural network with fast and slow dynamics, which are inspired by the hierarchy of timescales on neural activities in the cortex. The slow dynamics store the history of inputs and outputs and affect the fast dynamics depending on the stored history. We show that the learning rule that requires only local information can form the network generating the complex and robust sequences in the fast dynamics. The slow dynamics work as bifurcation parameters for the fast one, wherein they stabilize the next pattern of the sequence before the current pattern is destabilized depending on the previous patterns. This co-existence period leads to the stable transition between the current and the next pattern in the non-Markov sequence. We further find that timescale balance is critical to the co-existence period. Our study provides a novel mechanism generating robust complex sequences with multiple timescales. Considering the multiple timescales are widely observed, the mechanism advances our understanding of temporal processing in the neural system.


Author(s):  
Olga Drozdetskaya ◽  
Alexander Fidlin

AbstractThe slow dynamics of unbalanced rotors with a passive self-balancing system are investigated considering the interaction of the mechanical system with a limited power engine. The slow dynamics equations are obtained using the averaging technique for partially strongly damped systems. Stationary system configurations, different types of nonstationary solutions while passing through resonance, and areas of stability and attraction are investigated.


2021 ◽  
pp. 29-52
Author(s):  
Gaia Camisasca ◽  
Antonio Iorio ◽  
Lorenzo Tenuzzo ◽  
Paola Gallo

2021 ◽  
Vol 104 (11) ◽  
Author(s):  
Khagendra Adhikari ◽  
K. S. D. Beach
Keyword(s):  

2021 ◽  
Vol 11 (18) ◽  
pp. 8631
Author(s):  
Jan Kober ◽  
Alena Kruisova ◽  
Marco Scalerandi

Elastic slow dynamics, consisting in a reversible softening of materials when an external strain is applied, was experimentally observed in polycrystalline metals and presents analogies with the same phenomenon more widely observed in consolidated granular media. Since the effect is extremely small in metals, precise experimental techniques are needed. Reliable measurement of relative velocity variations of the order of 10−7 is crucial to perform the analysis. In addition, the grain structure and the nature of grain boundaries in metals is very different from that in rocks or concrete. Therefore, linking relaxation elastic effects to the microstructure is needed to understand the physical origin of slow dynamics in metals. Here, interpreting the relaxation phenomenon as a multirelaxation process, we show that it is sensitive to the spatial scale at the microstructural level, up to the point of allowing the identification of the existence of features at different spatial scales, particularly distinguishing damage from microstructural inhomogeneities.


2021 ◽  
Author(s):  
Yuji Masutomi ◽  
Toshichika Iizumi ◽  
Key Oyoshi ◽  
Nobuyuki Kayaba ◽  
Wonsik Kim ◽  
...  

Abstract. In this study, we aimed to evaluate the monthly precipitation forecasts of JMA/MRI-CPS2, a global dynamical seasonal climate forecast (Dyn-SCF) system operated in the Japan Meteorological Agency, by comparing them with the forecasts of a statistical SCF (St-SCF) system using climate indices systematically and globally. Accordingly, we developed a new global St-SCF system using 18 climate indices and compared the monthly precipitation of this system with those of JMA/MRI-CPS2. Consequently, it was found that JMA/MRI-CPS2 forecasts are superior to St-SCFs around the equator (10° S–10° N) even for six-month lead forecasts. For one-month lead forecasts, the accuracy of JMA/MRI-CPS2 forecasts was higher than that of St-SCFs when viewed globally. In contrast, for forecasts made two months or longer in advance, St-SCFs had an advantage in global forecasts. In addition to evaluating the accuracy of JMA/MRI-CPS2 forecasts, the slow dynamics of the ocean and atmosphere, not reproduced by the JMA/MRI-CPS2 system, were determined by comparing the evaluations, and it was concluded that this could contribute to improving Dyn-SCF systems.


Sign in / Sign up

Export Citation Format

Share Document