The stability of LaMnO3 surfaces: a hybrid exchange density functional theory study of an alkaline fuel cell catalyst

2013 ◽  
Vol 1 (37) ◽  
pp. 11152 ◽  
Author(s):  
E. A. Ahmad ◽  
G. Mallia ◽  
D. Kramer ◽  
A. R. Kucernak ◽  
N. M. Harrison
2014 ◽  
Vol 13 (06) ◽  
pp. 1450050 ◽  
Author(s):  
Jianguang Wang ◽  
Li Ma ◽  
Yanhua Liang ◽  
Meiling Gao ◽  
Guanghou Wang

Density functional theory calculations have been carried out to investigate 3d, Pd and Pt transition metal (TM) atoms exohedrally and endohedrally doped B 80 fullerene. We find that the most preferred doping site of the TM atom gradually moves from the outer surface ( TM = Sc ), to the inner surface ( TM = Ti and V ) and the center ( TM = Cr , Mn , Fe and Zn ), then to the outer surface ( TM = Co , Ni , Cu , Pd , and Pt ) again with the TM atom varying from Sc to Pt . From the formation energy calculations, we find that doping TM atom can further improve the stability of B 80 fullerene. The magnetic moments of doped V , Cr , Mn , Fe , Co and Ni atoms are reduced from their free-atom values and other TM atoms are completely quenched. Charge transfer and hybridization between 4s and 3d states of TM and 2s and 2p states of B were observed. The energy gaps of TM @ B 80 are usually smaller than that of the pure B 80. Endohedrally doped B 80 fullerene with two Mn and two Fe atoms were also considered, respectively. It is found that the antiferromagnetic (AFM) state is more energetically favorable than the ferromagnetic (FM) state for Mn 2- and Fe 2@ B 80. The Mn and Fe atoms carry the residual magnetic moments of ~ 3 μB and 2 μB in the AFM states.


Sign in / Sign up

Export Citation Format

Share Document