lattice density
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Matthew McConaha ◽  
Vysakh Venugopal ◽  
Sam Anand

Abstract Additive manufacturing (AM) allows for the inclusion of complicated geometric features that are impractical or impossible to manufacture by other means. Among such features is the collection of intricate and periodic strut-like geometries known as lattice structures. Lattice structures are desirable for their ability to provide stiffness through a large number of supporting members while employing void space within the geometry as a means to reduce part material volume. Strut thicknesses of every lattice in a part are generally not well optimized in order to maximize part stiffness, and often every lattice unit cell is identical throughout the part. This work presents a lattice density optimization methodology able to find the optimal graded lattice density distribution for maximizing the part stiffness and also improving the additive manufacturability of the part. The material property interpolation scheme used in SIMP optimization is replaced by a representative volume element (RVE)-based interpolation scheme that more accurately captures the material properties of the prescribed lattice structure at an arbitrary density. A filter has been developed that allows for the trimming of unnecessary lattices while simultaneously ensuring that the geometry remains self-supporting during the AM build process. This filter is incorporated seamlessly within the topology optimization routine. This increases the optimality of the resulting design compared to full-domain lattice filling and increases the viability of the design from a manufacturing standpoint compared to unconstrained lattice trimming.


2021 ◽  
Vol 63 (6) ◽  
pp. 740
Author(s):  
А.Г. Чекуряев ◽  
М.М. Сычев ◽  
С.В. Мякин

An approach to the study of the relationship between the composition, structure and properties of composites is suggested on the basis of statistical analysis of the distribution of structural elements of the composite between its cross-section fragments and determination of fractal parameters as quantitative characteristics of the material structure. The prospects of this approach are demonstrated on the example of analyzing the microstructure of composites based on cyanoethyl ester of polyvinyl alcohol (CEPVA) with a ferroelectric filler barium titanate (BaTiO3), modified by the precipitation of fullerenol C60(OH)42. The filler modification is shown to result in a decrease of the span and standard deviation of the number of particles between the fragments of the composite, increase in the average number of particles in the fragments, a decrease in the lacunarity of filling the polymer matrix with the filler particles, and increase in the intensity of all the lattice density distribution maxima and correlation radii starting from the second maximum. The obtained results indicate a significant improvement of the filler particles distribution uniformity in the binder and prevention of their agglomeration, thus providing an increase in the permittivity of the composites by an order of magnitude and making the studied materials promising for the application in electronic devices.


Author(s):  
Florian Vlădulescu ◽  
Dan Mihai Constantinescu

Lattice topology optimization can stimulate the design of new materials with spatially dependent properties with composite parts or three-dimensional printed components. The present work considers a mounting bracket for an industrial robotic arm as a case study, having as the main objective the increase of the fundamental frequency and secondly its mass reduction. Two design approaches were considered by using the ANSYS software: the first stage optimized the orthotropic lattice material by establishing an optimal variable cubic cell lattice density distribution in the geometric model; the second stage used a homogenized model based on the lattice optimization resulted from the previous stage and considered different volume fractions and variable density for four different types of cells. Homogenization increased the stiffness of the bracket by using the same cubic lattice cell and the fundamental frequency increased from 1227 Hz obtained with lattice optimization to 1366 Hz after homogenization. For the unoptimized bracket the fundamental frequency was only 839 Hz. The mass was reduced to more than half. The most effective proved to be the midpoint lattice cell as by homogenization the mass was reduced from 45.5 kg to 18.22 kg.


Computation ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 66 ◽  
Author(s):  
T. S. Müller ◽  
W. Töws ◽  
G. M. Pastor

Recent developments in the density-functional theory of electron correlations in many-body lattice models are reviewed. The theoretical framework of lattice density-functional theory (LDFT) is briefly recalled, giving emphasis to its universality and to the central role played by the single-particle density-matrix γ . The Hubbard model and the Anderson single-impurity model are considered as relevant explicit problems for the applications. Real-space and reciprocal-space approximations to the fundamental interaction-energy functional W [ γ ] are introduced, in the framework of which the most important ground-state properties are derived. The predictions of LDFT are contrasted with available exact analytical results and state-of-the-art numerical calculations. Thus, the goals and limitations of the method are discussed.


2018 ◽  
Vol 115 (18) ◽  
pp. 4565-4570 ◽  
Author(s):  
Benjamin E. R. Snyder ◽  
Lars H. Böttger ◽  
Max L. Bols ◽  
James J. Yan ◽  
Hannah M. Rhoda ◽  
...  

Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. Density functional theory calculations clarify how the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.


Sign in / Sign up

Export Citation Format

Share Document