cell density
Recently Published Documents


TOTAL DOCUMENTS

3954
(FIVE YEARS 747)

H-INDEX

102
(FIVE YEARS 11)

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 365
Author(s):  
Amy Issa ◽  
Jensen Edwards ◽  
Meenal Singh ◽  
Craig Friesen ◽  
Sarah Edwards

Background: Reports indicate patients with feeding difficulties demonstrate signs of inflammation on biopsies, notably eosinophilia, but it is unknown whether mast cell density contributes to variety or volume limitation symptoms. The aim of our study was to evaluate eosinophil and mast cell density of EGD biopsies in pediatric patients with symptoms of decreased volume or variety of ingested foods. Methods: We conducted a single-center, retrospective chart review of EMRs for all new feeding clinic patients between 0 and 17 years of age. Patients were categorized by symptoms at the initial visit as well as eosinophil and mast cell densities in those with EGD biopsies. Ten patients were identified as controls. Results: We identified 30 patients each with volume and variety limitation. Antral mast cell density was increased in 32.1% of variety-limited patients, 37.5% of volume limited patients, and in no controls; Duodenal mast cell density was increased in 32.1% of variety-limited patients, 40.6% of volume-limited patients, and in no controls. Conclusions: In both variety- and volume-limited patients, antral and duodenal mast cell densities were increased. These associations warrant further investigation of the mechanism between mast cells and development of feeding difficulties, allowing more targeted pediatric therapies.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jörg S. Deutzmann ◽  
Grace Callander ◽  
Wenyu Gu ◽  
Albert L. Müller ◽  
Alexandra L. McCully ◽  
...  

Optical density (OD) measurement is the gold standard to estimate microbial cell density in aqueous systems. Recording microbial growth curves is essential to assess substrate utilization, gauge sensitivity to inhibitors or toxins, or determine the perfect sampling point. Manual sampling for cuvette-photometer-based measurements can cause disturbances and impact growth, especially for strictly anaerobic or thermophilic microbes. For slow growing microbes, manual sampling can cause data gaps that complicate analysis. Online OD measurement systems provide a solution, but are often expensive and ill-suited for applications such as monitoring microbial growth in custom or larger anaerobic vessels. Furthermore, growth measurements of thermophilic cultures are limited by the heat sensitivity of complex electronics. Here, we present two simple, low-cost, self-assembled photometers—a “TubeOD” for online measurement of anaerobic and thermophilic cultures in Hungate tubes and a “ClampOD” that can be attached to virtually any transparent growth vessel. Both OD-meters can be calibrated in minutes. We detail the manufacturing and calibration procedure and demonstrate continuous acquisition of high quality cell density data of a variety of microbes, including strict anaerobes, a thermophile, and gas-utilizing strains in various glassware. When calibrated and operated within their detection limits (ca. 0.3–90% of the photosensor voltage range), these self-build OD-meters can be used for continuous measurement of microbial growth in a variety of applications, thereby, simplifying and enhancing everyday lab operations.


2022 ◽  
Author(s):  
Guanhua Xuan ◽  
Hong Lin ◽  
Jingxue Wang

There is a continuously expanding gap between predicted phage gene sequences and their corresponding functions, which largely hampered the development of phage therapy. Previous studies reported several phage proteins that could interfere with the intracellular processes of the host to obtain efficient infection. But few phage proteins that protect host against phage infection has been identified and characterized in detail. Here, we isolate a phage vB_Pae_QDWS capable of infecting Pseudomonas aeruginosa PAO1, and report its encoded Gp21 protein protects PAO1 against phage infection. Expressing of Gp21 regulate bacterial quorum sensing with an inhibitory effect in low cell density and activation effect in high cell density. By testing the TFPs-mediated twitching motility and transmission electron microscopy analysis, Gp21 was found decreased the pilus synthesis. Further constructing the TFPs synthesis gene pilB mutant and performing adsorption and phage resistance assay, we demonstrated Gp21 protein could block phage infection via decreasing the TFPs-mediated phage adsorption. Gp21 is a novel protein that inhibit phage efficacy against bacteria. The study deepens our understanding of phage-host interactions. Importance The majority of the annotated phage genes are currently deposited as “hypothetical protein” with unknown function. Researches revealed that some phage proteins serve to inhibit or redirect the host intracellular processes for phage infection. Differently, we report a phage encoded protein Gp21 that protect the host against phage infection. The pathways that Gp21 involved in anti-phage defense in Pseudomonas aeruginosa PAO1 are interfering with quorum sensing and decreasing the type IV pilus-mediated phage adsorption. Gp21 is a novel protein with a low sequence homology with other reported twitching inhibitory proteins. As a lytic phage derived protein, Gp21 expression protects P. aeruginosa PAO1 from reinfection by phage vB_Pae_QDWS, which may explain the well-known pseudolysogeny caused by virulent phages. Our discoveries provide valuable new insight into the phage-host evolutionary dynamics.


2022 ◽  
Vol 23 (2) ◽  
pp. 715
Author(s):  
Ji Yeon Kim ◽  
Saeyoung Park ◽  
Se-Young Oh ◽  
Yu Hwa Nam ◽  
Young Min Choi ◽  
...  

Mesenchymal stem cells (MSCs) can differentiate into endoderm lineages, especially parathyroid-hormone (PTH)-releasing cells. We have previously reported that tonsil-derived MSC (T-MSC) can differentiate into PTH-releasing cells (T-MSC-PTHCs), which restored the parathyroid functions in parathyroidectomy (PTX) rats. In this study, we demonstrate quality optimization by standardizing the differentiation rate for a better clinical application of T-MSC-PTHCs to overcome donor-dependent variation of T-MSCs. Quantitation results of PTH mRNA copy number in the differentiated cells and the PTH concentration in the conditioned medium confirmed that the differentiation efficiency largely varied depending on the cells from each donor. In addition, the differentiation rate of the cells from all the donors greatly improved when differentiation was started at a high cell density (100% confluence). The large-scale expression profiling of T-MSC-PTHCs by RNA sequencing indicated that those genes involved in exiting the differentiation and the cell cycle were the major pathways for the differentiation of T-MSC-PTHCs. Furthermore, the implantation of the T-MSC-PTHCs, which were differentiated at a high cell density embedded in hyaluronic acid, resulted in a higher serum PTH in the PTX model. This standardized efficiency of differentiation into PTHC was achieved by initiating differentiation at a high cell density. Our findings provide a potential solution to overcome the limitations due to donor-dependent variation by establishing a standardized differentiation protocol for the clinical application of T-MSC therapy in treating hypoparathyroidism.


Author(s):  
Julia M. Weller ◽  
Friedrich E. Kruse ◽  
Theofilos Tourtas

Abstract Purpose This study aimed to evaluate the clinical outcomes up to 10 years after Descemet membrane endothelial keratoplasty (DMEK). Methods In this retrospective, consecutive, single-center case series the medical files of eyes which have received DMEK between 2009 and 2012 for the treatment of endothelial dysfunction was evaluated regarding follow-up time and clinical outcomes. Annual examinations of best-corrected visual acuity (BCVA), endothelial cell density (ECD), central corneal thickness (CCT) of 66 eyes which fulfilled the criterion of a minimum of 8 years follow-up were analyzed. Results BCVA improved from 0.55 ± 0.37 logMAR (n = 54) to 0.15 ± 0.11 (n = 47) in eyes without ocular comorbidities one year after DMEK (p < 0.001), and remained stable up to 10 years after DMEK. Mean ECD decreased to 744 ± 207 cells/mm2 (n = 39) after 9 years, and to 729 ± 167 cells/mm2 (n = 21) after 10 years, respectively. CCT decreased from 650 ± 67 μm before DMEK to 525 ± 40 μm (n = 56) after 1 year, increasing slowly to 563 ± 40 µm (n = 39) after 9 years, and to 570 ± 42 µm (n = 21) after 10 years, respectively. Graft failure occurred in 4 of 66 eyes after year 8. These 4 eyes required repeat DMEK after 101–127 months. Conclusion This study shows the long-term outcomes in a small subset of DMEK grafts. Visual acuity remained stable in spite of slowly increasing corneal thickness and diminishing endothelial cell density during the 10-year period after DMEK.


Author(s):  
Ramon Hochstrasser ◽  
Hubert Hilbi

Legionella species are facultative intracellular pathogens, which cause a life-threatening pneumonia termed Legionnaires’ disease. Legionella pneumophila employs the Legionella quorum sensing (Lqs)-LvbR network to regulate virulence and motility, but its role for growth in media is ill-defined. Here we report that compared to the parental L. pneumophila strain JR32, a Δ lqsR mutant showed a reduced lag phase at 30°C and reached a higher cell density at 45°C, while the Δ lqsA , Δ lqsS and Δ lqsT mutants showed a longer lag phase and reached only a lower cell density. A Δ lvbR mutant resumed growth like the parental strain at 30°C, but exhibited a substantially reduced cell density at 45°C. Thus, LvbR is an important cell density regulator at elevated temperatures. Environmental and clinical L. pneumophila strains grew in AYE medium after distinct lag phases with similar rates at 30°C, reached different cell densities at the optimal growth temperature of 40°C, and no longer grew at 50°C. Legionella longbeachae reached a rather low cell density at 40°C and did not grow at and beyond 45°C. Genes encoding components of the Lqs-LvbR network were present in the genomes of the environmental and clinical L. pneumophila isolates, and upon growth at 30°C or 45°C the P lqsR , P lqsA , P lqsS and P lvbR promoters from strain JR32 were expressed in these strains with distinct patterns. Taken together, our results indicate that the Lqs-LvbR network governs the temperature-dependent growth onset and cell density of the L. pneumophila reference strain JR32, and possibly also of environmental and clinical L. pneumophila isolates. Importance Environmental bacteria of the genus Legionella are the causative agents of the severe pneumonia Legionnaires’ disease, the incidence of which is worldwide on the rise. Legionella pneumophila and Legionella longbeachae are the clinically most relevant species. The opportunistic pathogens are inhaled through contaminated aerosols and replicate in human lung macrophages with a similar mechanism as in their natural hosts, free-living amoebae. Given their prevalence in natural and technical water systems, an efficient control of Legionella spp. by physical, chemical or biological means will reduce the incidence of Legionnaires’ disease. Here we show that the Legionella quorum sensing (Lqs) system and the pleiotropic transcription factor LvbR govern the temperature-dependent growth onset and cell density of bacterial cultures. Hence, the growth of L. pneumophila in water systems is not only determined by the temperature and nutrient availability, but also by quorum sensing, i.e., density- and signaling molecule-dependent gene regulation.


Sign in / Sign up

Export Citation Format

Share Document