Poly(diallyldimethylammonium chloride)-functionalized reduced graphene oxide supported palladium nanoparticles for enhanced methanol oxidation

RSC Advances ◽  
2015 ◽  
Vol 5 (42) ◽  
pp. 32983-32989 ◽  
Author(s):  
Yan Hong Xue ◽  
Wei Jiang Zhou ◽  
Lan Zhang ◽  
Miao Li ◽  
Siew Hwa Chan

PDDA-functionalized rGO supported nano-size Pd particles show superior MOR activity in alkaline medium.

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 134
Author(s):  
Koduru Mallikarjuna ◽  
Lebaka Veeranjaneya Reddy ◽  
Sarah Al-Rasheed ◽  
Arifullah Mohammed ◽  
Sreedevi Gedi ◽  
...  

Novel reduced graphene oxide-supported palladium nanoparticles (RGO-PN) were synthesized under ultrasonication, a method that utilizes Coleus amboinicus as a bio-reduction agent. Green synthesized RGO-PN nanoparticles with a crystallite size in the range of 40–50 nm were confirmed in X-ray diffraction (XRD) spectra. RGO-PN show an absorption peak at 220 nm while reduced graphene oxide (RGO) shows its maximal absorbance at 210 nm. The scanning electron microscope image revealed that 40-nm-sized spherical-shaped palladium nanoparticles stick well to reduced graphene oxide sheets, which is consistent and correlated well with the XRD pattern. Moreover, a high-resolution morphological image of RGO-PN100 was obtained by TEM analysis, which shows the anchoring of palladium nanoparticles (PN) on RGO nanosheets. Green synthesized RGO-PN100 nanoparticles from Coleus amboinicus show better reduction kinetics for 4-nitrophenol at 40 min, suggesting that RGO-PN prepared from Coleus amboinicus serve as an excellent catalytic reducing agent. Furthermore, they show remarkable antibacterial activity against Escherichia coli (ATCC 25922). Thus, green synthesized RGO-supported palladium nanoparticles demonstrated that enhanced catalytic activity and antibacterial activity both play an important role in the environmental and medical disciplines.


RSC Advances ◽  
2016 ◽  
Vol 6 (101) ◽  
pp. 98708-98716 ◽  
Author(s):  
Zhelin Liu ◽  
Yinghui Feng ◽  
Xiaofeng Wu ◽  
Keke Huang ◽  
Shouhua Feng ◽  
...  

Pd nanoparticles with multi-edges and corners are prepared and assembled on reduced graphene oxide to examine the electrocatalytic activity. Point discharge is regarded to be capable of facilitating the electron transfer.


2019 ◽  
Vol 9 ◽  
pp. 184798041982717 ◽  
Author(s):  
Jen Chao Ng ◽  
Chou Yong Tan ◽  
Boon Hoong Ong ◽  
Atsunori Matsuda ◽  
Wan Jefrey Basirun ◽  
...  

In spite of advantages of direct methanol fuel cells, low methanol oxidation reaction and fuel crossover from anode to cathode, there remains a challenge that inhibits it from being commercialized. Active electrocatalysts are in high demand to promote the methanol oxidation reaction. The methanol reached at the anode can be immediately reacted, and thus, less methanol to cross to the cathode. The performance of electrocatalysts can be significantly influenced by varying the concentration of precursor solution. Theoretically, concentrated precursor solution facilitates rapid nucleation and growth; diluted precursor solution causes slow nucleation and growth. Rapid nucleation and slow growth have positive effect on the size of electrocatalysts which plays a significant role in the catalytic performance. Upon the addition of appropriate concentration of graphene oxide, the graphene oxide was reported to have stabilizing effect towards the catalyst nanoparticles. This work synthesized reduced graphene oxide–supported palladium electrocatalysts at different concentrations (0.5, 1.0, 2.0, 3.0 and 4.0 mg mL−1) with fixed volume and mass ratio of reduced graphene oxide to palladium by microwave-assisted reduction method. Results showed that reduced graphene oxide–supported palladium synthesized at a concentration of 1.0 mg mL−1 gave the best methanol oxidation reactivity (405.37 mA mg−1) and largest electrochemical active surface area (83.57 m2 g−1).


2020 ◽  
Vol 22 (10) ◽  
pp. 3239-3247 ◽  
Author(s):  
Qingxiao Zhang ◽  
Zhan Mao ◽  
Kaixuan Wang ◽  
Nam Thanh Son Phan ◽  
Fang Zhang

Microwave-assisted reduced graphene oxide supported palladium nanoparticles can efficiently promote aqueous Ullmann and Suzuki coupling reactions of aryl chlorides.


Sign in / Sign up

Export Citation Format

Share Document