Microwave-assisted aqueous carbon–carbon cross-coupling reactions of aryl chlorides catalysed by reduced graphene oxide supported palladium nanoparticles

2020 ◽  
Vol 22 (10) ◽  
pp. 3239-3247 ◽  
Author(s):  
Qingxiao Zhang ◽  
Zhan Mao ◽  
Kaixuan Wang ◽  
Nam Thanh Son Phan ◽  
Fang Zhang

Microwave-assisted reduced graphene oxide supported palladium nanoparticles can efficiently promote aqueous Ullmann and Suzuki coupling reactions of aryl chlorides.

Author(s):  
Hany A. Elazab ◽  
Tamer T. El-Idreesy

This paper reported a scientific approach adopting microwave-assisted synthesis as a synthetic route for preparing highly active palladium nanoparticles stabilized by polyvinylpyrrolidone (Pd/PVP) and supported on reduced Graphene oxide (rGO) as a highly active catalyst used for Suzuki, Heck, and Sonogashira cross coupling reactions with remarkable turnover number (6500) and turnover frequency of 78000 h-1. Pd/PVP nanoparticles supported on reduced Graphene oxide nanosheets (Pd-PVP/rGO) showed an outstanding performance through high catalytic activity towards cross coupling reactions. A simple, reproducible, and reliable method was used to prepare this efficient catalyst using microwave irradiation synthetic conditions. The synthesis approach requires simultaneous reduction of palladium and in the presence of Gaphene oxide (GO) nanosheets using ethylene glycol as a solvent and also as a strong reducing agent. The highly active and recyclable catalyst has so many advantages including the use of mild reaction conditions, short reaction times in an environmentally benign solvent system. Moreover, the prepared catalyst could be recycled for up to five times with nearly the same high catalytic activity. Furthermore, the high catalytic activity and recyclability of the prepared catalyst are due to the strong catalyst-support interaction. The defect sites in the reduced Graphene oxide (rGO) act as nucleation centers that enable anchoring of both Pd/PVP nanoparticles and hence, minimize the possibility of agglomeration which leads to a severe decrease in the catalytic activity. Copyright © 2019 BCREC Group. All rights reserved 


PLoS ONE ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. e0193281 ◽  
Author(s):  
Jaculin Raiza Anasdass ◽  
Pandian Kannaiyan ◽  
Raghunathan Raghavachary ◽  
Subash C. B. Gopinath ◽  
Yeng Chen

RSC Advances ◽  
2015 ◽  
Vol 5 (125) ◽  
pp. 103105-103115 ◽  
Author(s):  
Najrul Hussain ◽  
Pranjal Gogoi ◽  
Puja Khare ◽  
Manash R. Das

Synthesis of magnetically recoverable Ni nanoparticles supported reduced graphene oxide sheets as an efficient catalyst for the Sonogashira cross-coupling reaction.


2019 ◽  
Vol 1 (4) ◽  
pp. 1527-1530 ◽  
Author(s):  
Surjyakanta Rana ◽  
G. Bishwa Bidita Varadwaj ◽  
S. B. Jonnalagadda

Ni nanoparticle supported reduced graphene oxide is shown to be a highly active and durable heterogeneous catalyst for Kumada–Corriu cross-coupling reactions.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 134
Author(s):  
Koduru Mallikarjuna ◽  
Lebaka Veeranjaneya Reddy ◽  
Sarah Al-Rasheed ◽  
Arifullah Mohammed ◽  
Sreedevi Gedi ◽  
...  

Novel reduced graphene oxide-supported palladium nanoparticles (RGO-PN) were synthesized under ultrasonication, a method that utilizes Coleus amboinicus as a bio-reduction agent. Green synthesized RGO-PN nanoparticles with a crystallite size in the range of 40–50 nm were confirmed in X-ray diffraction (XRD) spectra. RGO-PN show an absorption peak at 220 nm while reduced graphene oxide (RGO) shows its maximal absorbance at 210 nm. The scanning electron microscope image revealed that 40-nm-sized spherical-shaped palladium nanoparticles stick well to reduced graphene oxide sheets, which is consistent and correlated well with the XRD pattern. Moreover, a high-resolution morphological image of RGO-PN100 was obtained by TEM analysis, which shows the anchoring of palladium nanoparticles (PN) on RGO nanosheets. Green synthesized RGO-PN100 nanoparticles from Coleus amboinicus show better reduction kinetics for 4-nitrophenol at 40 min, suggesting that RGO-PN prepared from Coleus amboinicus serve as an excellent catalytic reducing agent. Furthermore, they show remarkable antibacterial activity against Escherichia coli (ATCC 25922). Thus, green synthesized RGO-supported palladium nanoparticles demonstrated that enhanced catalytic activity and antibacterial activity both play an important role in the environmental and medical disciplines.


RSC Advances ◽  
2016 ◽  
Vol 6 (101) ◽  
pp. 98708-98716 ◽  
Author(s):  
Zhelin Liu ◽  
Yinghui Feng ◽  
Xiaofeng Wu ◽  
Keke Huang ◽  
Shouhua Feng ◽  
...  

Pd nanoparticles with multi-edges and corners are prepared and assembled on reduced graphene oxide to examine the electrocatalytic activity. Point discharge is regarded to be capable of facilitating the electron transfer.


Sign in / Sign up

Export Citation Format

Share Document