Enhanced nitrate removal in an Fe0-driven autotrophic denitrification system using hydrogen-rich water

2019 ◽  
Vol 5 (8) ◽  
pp. 1380-1388 ◽  
Author(s):  
Tingting Zhu ◽  
Weiwei Cai ◽  
Bo Wang ◽  
Wenzong Liu ◽  
Kai Feng ◽  
...  

Autotrophic denitrification can be driven using zero valent iron (ZVI) as an electron donor.

2016 ◽  
Vol 74 (5) ◽  
pp. 1185-1192 ◽  
Author(s):  
Jun-feng Su ◽  
Jing-xin Shi ◽  
Ting-lin Huang ◽  
Fang Ma ◽  
Jin-suo Lu ◽  
...  

The role of electron donors (Fe2+ and Mn2+) in the autotrophic denitrification of contaminated groundwater by bacterial strain SY6 was characterized based on empirical laboratory-scale analysis. Strain SY6 can utilize Fe2+ more efficiently than Mn2+ as an electron donor. This study has shown that the highest nitrate removal ratio, observed with Fe2+ as the electron donor, was approximately 88.89%. An immobilized biological filter reactor was tested by using three levels of influent nitrate (10, 30, and 50 mg/L), three pH levels (6, 7, and 8), and three levels of hydraulic retention time (HRT; 6, 8, and 12 h), respectively. An optimal nitrate removal ratio of about 95% was achieved at pH 6.0 using a nitrate concentration of 50 mg/L and HRT of 12 h with Fe2+ as an electron donor. The study showed that 90% of Fe2+ and 75.52% removal of Mn2+ were achieved at pH 8.0 with a nitrate concentration of 50 mg/L and a HRT of 12 h. Removal ratio of Fe2+ and Mn2+ is higher with higher influent nitrate and HRT. A weakly alkaline environment assisted the removal of Fe2+ and Mn2+.


NANO ◽  
2008 ◽  
Vol 03 (04) ◽  
pp. 297-300 ◽  
Author(s):  
NI-BIN CHANG ◽  
MARTY WANIELISTA ◽  
FAHIM HOSSAIN ◽  
LEI ZHAI ◽  
KUEN-SONG LIN

Nutrients, such as nitrate, nitrite, and phosphorus, are common contaminants in many aquatic systems in the United States. Ammonia and nitrate are both regulated by the drinking water standards in the US primarily because excess levels of nitrate might cause methemoglobinemia. Phosphorus might become sources of the eutrophication problems associated with toxic algae in the freshwater bodies. Toxic algal blooms can cause severe acute and chronic public health problems. Chemical reduction of nitrate by using zero-valent iron started as early as 1964, and considerable research reports relating to this technology to nanomaterial were extensively reported in 1990s making the use of nanoscale zero-valent iron (NZVI) particles for nitrate removal become one of the most popular technologies in this field. The purpose of the present study was to examine the potential of integrating green sorption media, such as sawdust, limestone, tire crumb, and sand/silt, with two types of nanoparticles, including NZVI and Titanium Dioxide ( TiO 2), for nitrate removal in an engineering process. The study consists of running packed bed column tests followed by the addition of NZVI and TiO 2 to improve nitrate and phosphorus removal efficiency. Preliminary results in this paper show that the potential and advanced study may support the creation of design criteria of stormwater and groundwater treatment systems for water reuse in the future.


2018 ◽  
Vol 35 (11) ◽  
pp. 1228-1234 ◽  
Author(s):  
Jun feng Su ◽  
Dong xin Guo ◽  
Ting lin Huang ◽  
Jin suo Lu ◽  
Xue chen Bai ◽  
...  

2018 ◽  
Vol 53 (3) ◽  
pp. 1545-1554 ◽  
Author(s):  
Ting-ting Zhu ◽  
Hao-yi Cheng ◽  
Li-hui Yang ◽  
Shi-gang Su ◽  
Hong-cheng Wang ◽  
...  

Chemosphere ◽  
2014 ◽  
Vol 97 ◽  
pp. 10-15 ◽  
Author(s):  
Carmen Fajardo ◽  
Mabel Mora ◽  
Isaac Fernández ◽  
Anuska Mosquera-Corral ◽  
José Luis Campos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document