Transition metal doping activated basal-plane catalytic activity of two-dimensional 1T’-ReS2 for hydrogen evolution reaction: a first-principles calculation study

Nanoscale ◽  
2019 ◽  
Vol 11 (21) ◽  
pp. 10402-10409 ◽  
Author(s):  
Jing Pan ◽  
Rui Wang ◽  
Xiaoyong Xu ◽  
Jingguo Hu ◽  
Liang Ma

Non-noble transition metals Mo and Cr doping greatly enhances the basal-plane catalytic activity of two-dimensional 1T′-ReS2 for hydrogen evolution reaction as comparable with those of Pt-doping.

2020 ◽  
Vol 8 (37) ◽  
pp. 19522-19532
Author(s):  
Yiqing Chen ◽  
Pengfei Ou ◽  
Xiaohan Bie ◽  
Jun Song

The 2H/1T′ phase boundary activated hydrogen evolution reaction on two-dimensional transition metal dichalcogenides is well studied by comprehensive first-principles calculations.


2019 ◽  
Vol 7 (9) ◽  
pp. 4971-4976 ◽  
Author(s):  
Tongtong Wang ◽  
Xiaosong Guo ◽  
Jingyan Zhang ◽  
Wen Xiao ◽  
Pinxian Xi ◽  
...  

We give a systematic study of the HER catalytic activity of transition metal doped NiS2 by first principles calculations and experiments.


2020 ◽  
Vol 10 (9) ◽  
pp. 3087 ◽  
Author(s):  
Hagyeong Kwon ◽  
Dongyeon Bae ◽  
Hyeyoung Jun ◽  
Byungdo Ji ◽  
Dongyeun Won ◽  
...  

We report the electrochemical hydrogen evolution reaction (HER) of two-dimensional metallic transition metal dichalcogenides (TMDs). TMTe2 (TM: Mo, W, and V) single crystals were synthesized and characterized by optical microscopy, X-ray diffraction, and electrochemical measurements. We found that TMTe2 acts as a HER-active catalyst due to the inherent catalytic activity of its basal planes. Among the three metallic TMTe2, VTe2 shows the best HER performance with an overpotential of 441 mV and a Tafel slope of 70 mV/dec. It is 668 mV and 137 mV/dec for MoTe2 and 692 mV and 169 mV/dec for WTe2. Even though VTe2 has the lowest values in the exchange current density, the active site density, and turn-over-frequency (TOF) among the three TMTe2, the lowest charge transfer resistance (RCT) of VTe2 seems to be critical to achieving the best HER performance. First-principles calculations revealed that the basal-plane-active HER performance of metallic TMDs can be further enhanced with some Te vacancies. Our study paves the way to further study of the inherent catalytic activity of metallic 2D materials for active hydrogen production.


2019 ◽  
Vol 7 (5) ◽  
pp. 2334-2343 ◽  
Author(s):  
In Hye Kwak ◽  
Ik Seon Kwon ◽  
Hafiz Ghulam Abbas ◽  
Jaemin Seo ◽  
Gabin Jung ◽  
...  

Two-dimensional 1T′ phase MoS2 that was intercalated with a series of alkylated p-phenylenediamines exhibits excellent catalytic activity toward hydrogen evolution reaction, supported by first-principles calculations.


2018 ◽  
Vol 6 (41) ◽  
pp. 20005-20014 ◽  
Author(s):  
Seung Hyo Noh ◽  
Jeemin Hwang ◽  
Joonhee Kang ◽  
Min Ho Seo ◽  
Daehyeon Choi ◽  
...  

This study establishes big data for the catalytic properties of two-dimensional metal-dichalcogenides (2D-TMDs) toward the hydrogen evolution reaction (HER). In addition to conventionally known active sites of edges, it proposes that terrace sites (or the basal plane) can be substantially activated for the HER.


2020 ◽  
Vol 22 (17) ◽  
pp. 9415-9423
Author(s):  
Jing Pan ◽  
Wannian Zhang ◽  
Xiaoyong Xu ◽  
Jingguo Hu

Surface functionalization with polar ligands to tune band edges of two-dimensional 1T′-ReS2 and enhance its photocatalytic activity for hydrogen production.


2020 ◽  
Vol 22 (6) ◽  
pp. 3254-3263 ◽  
Author(s):  
Ruiqi Ku ◽  
Guangtao Yu ◽  
Jing Gao ◽  
Xuri Huang ◽  
Wei Chen

Coupled with the high structural stability and good conductivity, all the new 2D composite nanostructures TM4@GDY (TM = Sc, Ti, Mn, Fe, Co, Ni and Cu) can uniformly exhibit considerably high catalytic activity for hydrogen evolution reaction.


Author(s):  
Han Seul Kim

The theoretical design of an ON–OFF switchable HER catalyst based on the two-dimensional ferroelectric material In2Se3 and transition metal cobalt.


Author(s):  
Jing Ji ◽  
Cunjin Zhang ◽  
Shuaibo Qin ◽  
Peng Jin

The oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) all have attracted much attention due to their utmost importance for clean and renewable energy applications....


Sign in / Sign up

Export Citation Format

Share Document