first principle calculations
Recently Published Documents


TOTAL DOCUMENTS

876
(FIVE YEARS 259)

H-INDEX

40
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Tamanna Sharma ◽  
Raman Sharma ◽  
Dilip Kanhere

First principle calculations have been performed to study the characteristic properties of SenTen (n=5-10) clusters. Present study reveals that the properties of these small clusters are consistent with the properties...


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 141
Author(s):  
Georgy A. Ermolaev ◽  
Dmitry I. Yakubovsky ◽  
Marwa A. El-Sayed ◽  
Mikhail K. Tatmyshevskiy ◽  
Arslan B. Mazitov ◽  
...  

SnS2 and SnSe2 have recently been shown to have a wide range of applications in photonic and optoelectronic devices. However, because of incomplete knowledge about their optical characteristics, the use of SnS2 and SnSe2 in optical engineering remains challenging. Here, we addressed this problem by establishing SnS2 and SnSe2 linear and nonlinear optical properties in the broad (300–3300 nm) spectral range. Coupled with the first-principle calculations, our experimental study unveiled the full dielectric tensor of SnS2 and SnSe2. Furthermore, we established that SnS2 is a promising material for visible high refractive index nanophotonics. Meanwhile, SnSe2 demonstrates a stronger nonlinear response compared with SnS2. Our results create a solid ground for current and next-generation SnS2- and SnSe2-based devices.


2021 ◽  
Vol 9 (2) ◽  
pp. 71-75
Author(s):  
Akram H. Taha

Density functional theory (DFT) coupled with ) method are carried out to calculate the electronic structures of AgX (X; Br, Cl, and F). The effect of hybridizing between 4d orbital of Ag element and the p orbitals of the X in the valence band plays a very important role in the total density of states configuration. The electronic structure has been studied and all results were compared with the experimental and theoretical values. The importance of this work is that there is insufficient studies of silver halides corresponding the great importance of these compounds. Almost all the results were consistent with the previous studies mentioned here. We found the band gap of AgX to be 2.343 eV, 2.553 eV, and 1.677 eV for AgBr, AgCl, and AgF respectively which are in good agreement with the experimental results.      


2021 ◽  
Vol 53 (3) ◽  
pp. 369-379
Author(s):  
Abdul-Muizz Pradipto ◽  
Kohji Nakamura

The intrinsic spin Hall effect in the bulk systems of late  transition metals (Os, Ir, Pt, and Au) as well as the Pt-based superlattices were investigated by using first-principle calculations. By comparing the computed spin Hall conductivities of Pt−M superlattices (M=Os, Ir, and Au) with different compositions and those obtained from atomic bulk composition, we saw that the spin Hall conductivities (SHCs) follow the behavior described by the Slater-Pauling curve, the maximum of which is at pure Pt bulk. From the examination of the band structures of the considered systems, we found that the origin of this behavior comes from the variation of the band structures as a direct consequence of the change of the number of electrons and hybridization effects.


2021 ◽  
Author(s):  
Evren Görkem Özdemir ◽  
Semih Doğruer

Abstract The first-principle calculations of PtWZ (Z= In, Tl, Sn, and Pb) half-Heusler alloys were calculated by WIEN2k for GGA and GGA+mBJ methods. First, the ferromagnetic (FM) phases were obtained more energetically stable than non-magnetic (NM) and antiferromagnetic (AFM) phases in each alloy. The Curie temperatures of PtWIn, PtWTl, PtWSn, and PtWPb alloys were obtained as 286.98 K, 467.14 K, 721.98 K, and 1114.31 K, respectively, by utilizing the energy differences of the AFM and FM phases. In each method and alloy used, spin-up electrons showed metallic character. In the GGA method, PtW(In, Tl) alloys have direct band gaps of 0.72044 eV and 0.91488 eV in spin-down electrons, while PtW(Sn, Pb) alloys have indirect band gaps of 1.2558 eV and 1.11892 eV, respectively. In the GGA+mBJ method, the bandgap directions in all compounds remained the same. Here, band gaps in PtW(In, Tl, Sn, and Pb) alloys were obtained as 0.99918 eV, 1.15385 eV, 1.42676 eV, and 1.17497 eV, respectively. While the total magnetic moment values of PtW(In, Tl) half-Heusler alloys were obtained as 1.00 μB/f.u., the total magnetic moments of PtW(Sn, Pb) alloys were obtained as 2.00 μB/f.u. These results are in full agreement with the Slater-Pauling rule. According to elastic calculations, PtWIn, PtWTl, PtWSn, and PtWPb half-Heusler alloys are elastically stable and ductile.


Sign in / Sign up

Export Citation Format

Share Document