scholarly journals Selective detection of trinitrophenol by a Cd(ii)-based coordination compound

RSC Advances ◽  
2019 ◽  
Vol 9 (66) ◽  
pp. 38718-38723 ◽  
Author(s):  
Basudeb Dutta ◽  
Rakesh Purkait ◽  
Suprava Bhunia ◽  
Samim Khan ◽  
Chittaranjan Sinha ◽  
...  

A Cd(ii)-based coordination compound, [CdI2(4-nvp)2] (1), has been synthesized using CdI2 and monodentate N-donor ligand 4-(1-naphthylvinyl)pyridine (4-nvp).

2019 ◽  
Vol 14 (9) ◽  
pp. 952-956
Author(s):  
Yining Zhu ◽  
Wang Li ◽  
Cheng Ju ◽  
Xiang Gong ◽  
Wenhao Song ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Suman Duhan ◽  
Kedar Sahoo ◽  
Sudhir Kumar Singh ◽  
Manoj Kumar

The development of a sensitive alpha-NaYF4:Yb3+, Er3+ solid-phase upconverting platform (UCP) has been realized using Moringa oleifera leaf extract for selective detection of arsenic (As III) contamination in drinking water. The presence of polyphenols in the leaves extract is shown to induce luminescence resonance transfer (LRET), diminishing thereby the Er3+ upconverting red and green emissions activated by 980 nm excitation. However, addition of As3+ species interrupts the LRET process and restores emission proportionately. This feature allows platform to selectively detect arsenic pollution in water below the safe limit of 10 ppt. The uniqueness of UCP lies in monitoring the As3+ contamination in samples containing heavy ions (Cd2+, Hg2+) as well, without apparent effect on the signal reproducibility. UCP is also found to be insensitive to other interfering ions like Pb2+, H2PO4-, F-, Cl-, Ca2+, Mg2+, Sn2+, Cr6+, Fe2+ and Co2+, if present.<br><br>


2017 ◽  
Author(s):  
Robson de Farias

In the present work, the reliability of the volume-based thermodynamics (VBT) methods in the calculation of lattice energies is investigated by applying the “traditional” Kapustinskii equation [8], as well as Glasser-Jenkins [3] and Kaya [5] equations to calculate the lattice energies for Na, K and Rb pyruvates [9-11] as well as for the coordination compound [Bi(C<sub>7</sub>H<sub>5</sub>O<sub>3</sub>)<sub>3</sub>C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>] [17] (in which C<sub>12</sub>H<sub>8</sub>N<sub>2</sub> = 1,10 phenathroline and C<sub>7</sub>H<sub>5</sub>O<sub>3</sub><sup>-</sup>= <i>o</i>-hyddroxybenzoic acid anion). As comparison, the lattice energies are also calculated using formation enthalpy values for sodium pyrivate and [Bi(C<sub>7</sub>H<sub>5</sub>O<sub>3</sub>)<sub>3</sub>C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>]. For the pyruvates, is verified that none of the considered approach, Kapustinskii, Glasser, Kaya or density, provides values that agrees in an acceptable % difference, with the lattice energy values calculated from the formation enthalpy values. However, it must be pointed out that Kaya approach, with deals with a chemical hardness approach is the better one for such kind of inorganic-organic salts. Based on data obtained for [Bi(C<sub>7</sub>H<sub>5</sub>O<sub>3</sub>)<sub>3</sub>C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>] is concluded that the only one VBT method that provides reliable lattice energies for compounds with bulky uncharged ligands is that one based on density values (derived by Glasser-Jenkins).


Sign in / Sign up

Export Citation Format

Share Document