polychlorinated biphenyls
Recently Published Documents





Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 353
Lucia Alonso-Pedrero ◽  
Carolina Donat-Vargas ◽  
Maira Bes-Rastrollo ◽  
Ana Ojeda-Rodríguez ◽  
Guillermo Zalba ◽  

Exposure to persistent organic pollutants (POPs) may influence telomere length (TL), which is considered as a marker of biological age associated with the risk of chronic disease. We hypothesized that dietary exposure to polychlorinated biphenyls (PCBs) and dioxins could affect TL. Our aim was to evaluate the association of dietary exposure to PCBs and dioxins with TL. In this cross-sectional study of 886 subjects older than 55 y (mean age: 67.7; standard deviation (SD): 6.1; 27% women) from the “Seguimiento Universidad de Navarra” (SUN) project. TL was determined by real-time quantitative polymerase chain reaction and dietary PCBs and dioxins exposure was collected using a validated 136-item Food Frequency Questionnaire. Multivariable linear regression models were used to control for potential confounding factors. Shorter TL was associated with dietary total PCBs (SD of T/S ratio/(ng/day) = −0.30 × 10−7; 95% CI, −0.55 × 10−7 to −0.06 × 10−7), dioxin-like PCBs (DL-PCBs) (SD of T/S ratio/(pg WHO TEQ (Toxic Equivalents)/day) = −6.17 × 10−7; 95% CI, −11.30 × 10−7 to −1.03 × 10−7), and total TEQ exposure (SD of T/S ratio/(pg WHO TEQ/day) = −5.02 × 10−7; 95% CI, −9.44 × 10−7 to −0.61 × 10−7), but not with dioxins (SD of T/S ratio/(pg WHO TEQ/day) = −13.90 × 10−7; 95% CI, −37.70 × 10−7 to 9.79 × 10−7). In this sample of middle-aged and older Spanish adults, dietary exposure to total PCBs and DL-PCBs alone and together with dioxins was associated with shorter TL. Further longitudinal studies, preferably with POPs measured in biological samples, are needed to confirm this finding.

2022 ◽  
Vol 805 ◽  
pp. 150270
Minghan Zhu ◽  
Yibo Yuan ◽  
Hua Yin ◽  
Zhanyu Guo ◽  
Xipeng Wei ◽  

2022 ◽  
pp. 112648
Qihua Lin ◽  
Xinru Zhou ◽  
Shusheng Zhang ◽  
Junliang Gao ◽  
Mengqi Xie ◽  

Jaysón Davidson ◽  
Kyndall Nicholas ◽  
Jeremy Young ◽  
Deborah G. Conrady ◽  
Stephen Mayclin ◽  

Paraburkholderia xenovorans degrades organic wastes, including polychlorinated biphenyls. The atomic structure of a putative dehydrogenase/reductase (SDR) from P. xenovorans (PxSDR) was determined in space group P21 at a resolution of 1.45 Å. PxSDR shares less than 37% sequence identity with any known structure and assembles as a prototypical SDR tetramer. As expected, there is some conformational flexibility and difference in the substrate-binding cavity, which explains the substrate specificity. Uniquely, the cofactor-binding cavity of PxSDR is not well conserved and differs from those of other SDRs. PxSDR has an additional seven amino acids that form an additional unique loop within the cofactor-binding cavity. Further studies are required to determine how these differences affect the enzymatic functions of the SDR.

Sign in / Sign up

Export Citation Format

Share Document