How well do self-interaction corrections repair the over-estimation of molecular polarizabilities in density functional calculations?

Author(s):  
Sharmin Akter ◽  
Jorge Alberto Vargas Tellez ◽  
Kamal Sharkas ◽  
Juan Peralta ◽  
Koblar Jackson ◽  
...  

We examine the effect of removing self-interaction error (SIE) on the calculation of molecular polarizabilities in the local spin density (LSDA) and generalized gradient approximations (GGA). To this end, we...

1992 ◽  
Vol 70 (2) ◽  
pp. 560-571 ◽  
Author(s):  
Nathalie Godbout ◽  
Dennis R. Salahub ◽  
Jan Andzelm ◽  
Erich Wimmer

Gaussian-type orbital and auxiliary basis sets have been optimized for local spin density functional calculations. This first paper deals with the atoms boron through neon. Subsequent papers will provide a list through xenon. The basis sets have been tested for their ability to give equilibrium geometries, bond dissociation energies, hydrogenation energies, and dipole moments. These results indicate that the present optimization technique yields reliable basis sets for molecular calculations. Keywords: Gaussian basis sets, density functional theory, boron–neon, geometries, energies of reactions.


Sign in / Sign up

Export Citation Format

Share Document