Study of the structural and optoelectronic properties of dye solar cells based on a phosphonic acid anchoring by functionals DFT.

2021 ◽  
Author(s):  
Driss Fadili ◽  
Si Mohamed Bouzzine ◽  
mohamed hamidi

Six conformers of benzothiadiazole (BTD) flanked by two thiophenes on each side (T4) mono-functionalized by a phosphonic acid (A) (T4-BTDA) have been investigated by the mean of the Density Functional...

2021 ◽  
Vol 91 ◽  
pp. 106077
Author(s):  
Faiza Jan Iftikhar ◽  
Qamar Wali ◽  
Shengyuan Yang ◽  
Yaseen Iqbal ◽  
Rajan Jose ◽  
...  

2019 ◽  
Vol 18 (07) ◽  
pp. 1950036
Author(s):  
Maria Naeem ◽  
Sobia Jabeen ◽  
Rasheed Ahmad Khera ◽  
Usama Mubashar ◽  
Javed Iqbal

In the present study, four molecules have been designed by substituting various acceptor moieties around the triphenylamine donor moiety like 2-cyano acrylic acid (R), 2-methylene malonitrile (M1), 2-cyano acrylic acid methyl ester(M2), 2-(2-methylene-3-oxo-indan-1-ylidene)-malonitrile (M3), 2-(6,7-difluoro-2-methylene-3-oxo-indan-1-ylidene)-malonitrile (M4), respectively. CAM-B3LYP/6-31G (d, p) level of theory by using density functional theory (DFT) has been used for the investigation of optoelectronic properties of four new triphenylamine (TPA)-based donor materials (M1–M4) for organic solar cells. In comparison with the recently reported reference molecule, the optoelectronic properties of designed molecules were evaluated. M4 showed absorption maxima at 520[Formula: see text]nm due to extended conjugation with bridged thiophene group. Results of reorganization energy calculations also favor M4 exhibiting highest transfer rate of hole as depicted from its low reorganization energy of hole ([Formula: see text].


RSC Advances ◽  
2017 ◽  
Vol 7 (67) ◽  
pp. 42455-42461 ◽  
Author(s):  
Dan Liang ◽  
Ruge Quhe ◽  
Yingjie Chen ◽  
Liyuan Wu ◽  
Qian Wang ◽  
...  

Motivated by potential extensive applications in nanoelectronics devices, we calculate structural and optoelectronic properties of two-dimensional InN as well as its three-dimensional counterparts by using density functional theory.


Sign in / Sign up

Export Citation Format

Share Document